Bifunctional Role of LiNO3 in Li-O2 Batteries: Deconvoluting Surface and Catalytic Effects

被引:38
|
作者
Rosy [1 ]
Akabayov, Sabine [2 ]
Leskes, Michal [2 ]
Noked, Malachi [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
关键词
Li-O-2; batteries; lithium nitrate; carbon cathode; catalytic effect; surface passivation; suppressed oxidative damage; LI-AIR BATTERIES; X-RAY-DIFFRACTION; OXYGEN REDUCTION; LITHIUM-NITRATE; ELECTROLYTE; CELLS; PERFORMANCE; SALTS; NMR; SPECTROSCOPY;
D O I
10.1021/acsami.8b10054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Out of the many challenges in the realization of lithium-O-2 batteries (LOB), the major is to deal with the instability of the electrolyte and the cathode interface under the stringent environment of both oxygen reduction and evolution reactions. Lithium nitrate was recently proposed as a promising salt for LOB because of its capability to stabilize the lithium anode by the formation of a solid electrolyte interphase, its low level of dissociation in aprotic solvents, and its catalytic effect toward oxygen evolution reaction (OER) in rechargeable LOB. Nevertheless, a deeper understanding of the influence of nitrate on the stability and electrochemical response of the cathode in LOB is yet to be realized. Additionally, it is well accepted that carbon instability toward oxidation therefore, it is essential to investigate the effect of electrolyte components on this side of the battery. In the present work, we show that nitrate leads to interfacial changes, which result in the formation of a surface protection domain on the carbon scaffold of LOB cathode, which helps in suppressing the oxidative damage of the carbon. This effect is conjugated with an additional electrocatalytic effect of the nitrate ion on the OER Using in operando online electrochemical mass spectroscopy, we herein deconvolute these two positive effects and show how they are dependent on nitrate concentration and the potential of cell operation. We show that a low amount of nitrate can exhibit the catalytic behavior; however, in order to harness its ability to suppress the oxidative damage and passivate the carbon surface, an excess of LiNO3 is required.
引用
收藏
页码:29622 / 29629
页数:8
相关论文
共 50 条
  • [31] Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries
    Li Ran
    Lu Yanying
    Lei Kaixiang
    Li Fujun
    Cheng Fangyi
    Chen Jun
    ACTA CHIMICA SINICA, 2017, 75 (02) : 199 - 205
  • [32] An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries
    Li, Jiaxin
    Zou, Mingzhong
    Chen, Luzhuo
    Huang, Zhigao
    Guan, Lunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (27) : 10634 - 10638
  • [33] Graphene in Li-O2 and Li-CFx batteries
    Xiao, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [34] The Decisive Role of Li2O2 Desorption for Oxygen Reduction Reaction in Li-O2 Batteries
    Xu, Chengyang
    Ge, Aimin
    Kannari, Koki
    Peng, Baoxu
    Xue, Min
    Ding, Bing
    Inoue, Ken-ichi
    Zhang, Xiaogang
    Ye, Shen
    ACS ENERGY LETTERS, 2023, 8 (03) : 1289 - 1299
  • [35] Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O2 batteries
    Varley, J. B.
    Viswanathan, V.
    Norskov, J. K.
    Luntz, A. C.
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) : 720 - 727
  • [36] Electrochemical and catalytic properties of V2O5/Al2O3 in rechargeable Li-O2 batteries
    Lim, Sung Hoon
    Kim, Do Hyung
    Byun, Ji Young
    Kim, Bok Ki
    Yoon, Woo Young
    ELECTROCHIMICA ACTA, 2013, 107 : 681 - 685
  • [37] Multiporous MnCo2O4 Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous Li-O2 Batteries
    Ma, Shunchao
    Sun, Liqun
    Cong, Lina
    Gao, Xuguang
    Yao, Cen
    Guo, Xin
    Tai, Linghua
    Mei, Peng
    Zeng, Yanping
    Xie, Haiming
    Wang, Rongshun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (49): : 25890 - 25897
  • [38] Surface Coating Layer on Li Metal for Increased Cycle Stability of Li-O2 Batteries
    Jang, Il Chan
    Ida, Shintaro
    Ishihara, Tatsumi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : A821 - A826
  • [39] Synergistic Effect of Oxygen and LiNO3 on the Interfacial Stability of Lithium Metal in a Li/O2 Battery
    Giordani, Vincent
    Walker, Wesley
    Bryantsev, Vyacheslav S.
    Uddin, Jasim
    Chase, Gregory V.
    Addison, Dan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1544 - A1550
  • [40] Understanding the Catalytic Activity of the Preferred Nitrogen Configuration on the Carbon Nanotube Surface and Its Implications for Li-O2 Batteries
    Yi, Xiaoping
    Liu, Xunliang
    Dou, Ruifeng
    Wen, Zhi
    Zhou, Wenning
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (41): : 22570 - 22580