Generating new classes of fixed-time stable systems with predefined upper bound for the settling time

被引:29
|
作者
Aldana-Lopez, Rodrigo [1 ]
Gomez-Gutierrez, David [2 ,3 ]
Jimenez-Rodriguez, Esteban [4 ]
Diego Sanchez-Torres, Juan [4 ]
Defoort, Michael [5 ]
机构
[1] Univ Zaragoza, Dept Comp Sci & Syst Engn, Zaragoza, Spain
[2] Intel Tecnol Mexico, Multiagent Autonomous Syst Lab, Intel Labs, Tlaquepaque, Jalisco, Mexico
[3] Escuela Ingn & Ciencias, Tecnol Monterrey, Tlaquepaque, Jalisco, Mexico
[4] ITESO, Dept Math & Phys, Tlaquepaque, Jalisco, Mexico
[5] UPHF, LAMIH, UMR CNRS 8201, INSA Hauts de France, Valenciennes, France
关键词
Predefined-time systems; fixed-time systems; prescribed-time systems; FINITE-TIME; LINEAR-SYSTEMS; STABILIZATION; STABILITY; CONSENSUS; CONVERGENCE; OBSERVER; DESIGN;
D O I
10.1080/00207179.2021.1936190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to provide a methodology for generating autonomous and non-autonomous systems with a fixed-time stable equilibrium point where an Upper Bound of the Settling Time (UBST) is set a priori as a parameter of the system. Furthermore, some conditions for such an upper bound to be the least one are provided. This construction procedure is a relevant contribution compared with traditional methodologies for generating fixed-time algorithms satisfying time constraints since current estimates of an UBST may be too conservative. The proposed methodology is based on time-scale transformations and Lyapunov analysis. It allows the presentation of a broad class of fixed-time stable systems with predefined UBST, placing them under a common framework with existing methods using time-varying gains. To illustrate the effectiveness of our approach, we generate novel, autonomous and non-autonomous, fixed-time stable algorithms with predefined least UBST.
引用
收藏
页码:2802 / 2814
页数:13
相关论文
共 50 条
  • [41] Fixed-time stabilization for a class of nonlinear time-delay systems
    Wang, Xuhuan
    Peng, Youhua
    Xie, Yuande
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 9876 - 9886
  • [42] Fixed-Time Stable Proximal Dynamical System for Solving MVIPs
    Garg, Kunal
    Baranwal, Mayank
    Gupta, Rohit
    Benosman, Mouhacine
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 5029 - 5036
  • [43] Fixed-time and finite-time stability of switched time-delay systems
    Zhang, Junfeng
    Efimov, Denis
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (10) : 2780 - 2792
  • [44] Fixed-Time Stability of Time-Varying Hybrid Systems with Time-Delay
    Chen, Guopei
    Yang, Ying
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (05) : 2758 - 2781
  • [45] Fixed-Time Stability of Time-Varying Hybrid Systems with Time-Delay
    Guopei Chen
    Ying Yang
    Circuits, Systems, and Signal Processing, 2024, 43 : 2758 - 2781
  • [46] Semi-Global Predefined-Time Stable Systems
    Jimenez-Rodriguez, Esteban
    Loukianov, Alexander G.
    Diego Sanchez-Torres, Juan
    2017 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2017,
  • [47] Consistent Discretization of a Class of Predefined-Time Stable Systems
    Jimenez-Rodriguez, Esteban
    Aldana-Lopez, Rodrigo
    Sanchez-Torres, Juan D.
    Gomez-Gutierrez, David
    Loukianov, Alexander G.
    IFAC PAPERSONLINE, 2020, 53 (02): : 628 - 633
  • [48] Fixed-Time Synchronization of Different Dimensional Filippov Systems
    Kong, Fanchao
    Zhu, Quanxin
    Hu, Cheng
    Huang, Tingwen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (03): : 1566 - 1575
  • [49] Fixed-Time convergent Adaptive Observer for LTI Systems
    Rueda-Escobedo, Juan G.
    Moreno, Jaime A.
    IFAC PAPERSONLINE, 2017, 50 (01): : 11639 - 11644
  • [50] Fixed-Time Disturbance Observer Design for Brunovsky Systems
    Ni, Junkang
    Liu, Ling
    Chen, Mou
    Liu, Chongxin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (03) : 341 - 345