On the Geometry of Normal Horospherical G-Varieties of Complexity One

被引:0
|
作者
Langlois, Kevin [1 ]
Terpereau, Ronan [2 ]
机构
[1] UAM, Inst Ciencias Matemat ICMAT, Campus Cantoblanco, Madrid 28049, Spain
[2] Johannes Gutenberg Univ Mainz, Fachbereich Phys Math & Informat, D-55099 Mainz, Germany
关键词
Luna-Vust theory; colored polyhedral divisors; normal G-varieties; TORUS ACTIONS; SPHERICAL VARIETIES; POLYHEDRAL DIVISORS; EMBEDDINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected simply-connected reductive algebraic group. In this article, we consider the normal algebraic varieties equipped with a horospherical G-action such that the quotient of a G-stable open subset is a curve. Let X be such a G-variety. Using the combinatorial description of Timashev, we describe the class group of X by generators and relations and we give a representative of the canonical class. Moreover, we obtain a smoothness criterion for X and a criterion to determine whether the singularities of X are rational or log-terminal, respectively.
引用
收藏
页码:49 / 78
页数:30
相关论文
共 50 条