On the Geometry of Normal Horospherical G-Varieties of Complexity One

被引:0
|
作者
Langlois, Kevin [1 ]
Terpereau, Ronan [2 ]
机构
[1] UAM, Inst Ciencias Matemat ICMAT, Campus Cantoblanco, Madrid 28049, Spain
[2] Johannes Gutenberg Univ Mainz, Fachbereich Phys Math & Informat, D-55099 Mainz, Germany
关键词
Luna-Vust theory; colored polyhedral divisors; normal G-varieties; TORUS ACTIONS; SPHERICAL VARIETIES; POLYHEDRAL DIVISORS; EMBEDDINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected simply-connected reductive algebraic group. In this article, we consider the normal algebraic varieties equipped with a horospherical G-action such that the quotient of a G-stable open subset is a curve. Let X be such a G-variety. Using the combinatorial description of Timashev, we describe the class group of X by generators and relations and we give a representative of the canonical class. Moreover, we obtain a smoothness criterion for X and a criterion to determine whether the singularities of X are rational or log-terminal, respectively.
引用
收藏
页码:49 / 78
页数:30
相关论文
共 50 条
  • [1] Cartier divisors and geometry of normal G-varieties
    Timashev, DA
    TRANSFORMATION GROUPS, 2000, 5 (02) : 181 - 204
  • [2] G-varieties of complexity 1
    Timashev, DA
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (03) : 567 - 568
  • [3] Classification of G-varieties of complexity 1
    Timashev, DA
    IZVESTIYA MATHEMATICS, 1997, 61 (02) : 363 - 397
  • [4] Stringy invariants for horospherical varieties of complexity one
    Langlois, Kevin
    Pech, Clelia
    Raibaut, Michel
    ALGEBRAIC GEOMETRY, 2019, 6 (03): : 346 - 383
  • [5] Geometry of Horospherical Varieties of Picard Rank One
    Gonzales, R.
    Pech, C.
    Perrin, N.
    Samokhin, A.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 8916 - 9012
  • [6] Small G-varieties
    Kraft, Hanspeter
    Regeta, Andriy
    Zimmermann, Susanna
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (01): : 173 - 215
  • [7] G-identities and G-varieties
    Amaglobeli M.G.
    Remeslennikov V.N.
    Algebra and Logic, 2000, 39 (3) : 141 - 154
  • [8] Varieties birationally isomorphic to affine G-varieties
    Petukhov A.V.
    Journal of Mathematical Sciences, 2010, 166 (6) : 773 - 778
  • [9] The cone of effective one-cycles of certain G-varieties
    Brion, M
    TRIBUTE TO C.S. SESHADRI: A COLLECTION OF ARTICLES ON GEOMETRY AND REPRESENTATION THEORY, 2003, : 180 - 198
  • [10] G-VARIETIES AND G-MICROFIBERS
    LEDIMET, JY
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (13): : 881 - 883