STABILITY PROBLEMS DERIVING FROM MIXED ADDITIVE AND QUADRATIC FUNCTIONAL EQUATIONS

被引:0
|
作者
Kang, Dongseung [1 ]
Koh, Heejeong [1 ]
Cho, In Goo [2 ]
机构
[1] Dankook Univ, Dept Math Educ, Yongin 448701, Gyeonggi Do, South Korea
[2] Incheon Natl Univ, Fac Liberal Educ, Yeonsu 406772, Incheon, South Korea
关键词
Shadowing property; Cauchy additive mapping; Quadratic mapping; Normed group; Hyers-Ulam-Rassias Stability; BANACH-SPACES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let n >= 2 be an integer. We obtain the solution of the following mixed additive and quadratic functional equation (4 - n)r(t) f(Sigma(n)(j=1) x(j)/r) + Sigma(n)(i=1)f (Sigma(n)(j=1) (-1)(delta ij) x(j)/r) = 2(t)Sigma(n)(i=1) f(x(i)), where t is an element of {1, 2}, r is an element of R (r not equal n/2, 2 and r(2) not equal n) and the function delta is a Kronecker delta, and we prove the stability in normed group by using shadowing property and the Hyers-Ulam-Rassias stability in Banach spaces.
引用
下载
收藏
页码:87 / 98
页数:12
相关论文
共 50 条