Optimal CPU Frequency Scaling Policies for Sustainable Edge Computing

被引:0
|
作者
Luo, Yu [1 ]
Pu, Lina [2 ]
Liu, Chun-Hung [1 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[2] Univ Alabama, Dept Comp Sci, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
EFFICIENCY; DESIGN;
D O I
10.1109/PIMRC50174.2021.9569613
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Sustainable edge computing (SEC) is a promising technology that can reduce energy consumption and computing latency for the mobile Internet of things (IoT). By collecting solar or wind energy from the environment, an SEC cloudlet outside the electric grid can provide powerful computing capabilities for resource-constrained mobile IoT devices. Considering significant density variation of sustainable energy over time, the SEC cloudlet needs to dynamically adjust the clock frequency of the central processing unit (CPU) to balance energy consumption and computing power. In this paper, we consider the limited energy storage of the cloudlet and develop an offline optimal CPU frequency scaling policy to maximize the overall computing power of the cloudlet within a certain period of time. The tightest string policy that gives a graphical viewpoint of the optimal CPU frequency scaling is found.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [21] A quantitative analysis of optimal sustainable monetary policies
    Sunakawa, Takeki
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2015, 52 : 119 - 135
  • [22] Governing energy consumption in Hadoop through CPU frequency scaling: An analysis
    Ibrahim, Shadi
    Phan, Tien-Dat
    Carpen-Amarie, Alexandra
    Chihoub, Houssem-Eddine
    Moise, Diana
    Antoniu, Gabriel
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 54 : 219 - 232
  • [23] Energy-Aware CPU Frequency Scaling for Mobile Video Streaming
    Hu, Wenjie
    Cao, Guohong
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, : 2314 - 2321
  • [24] Energy-Aware CPU Frequency Scaling for Mobile Video Streaming
    Yang, Yi
    Hu, Wenjie
    Chen, Xianda
    Cao, Guohong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (11) : 2536 - 2548
  • [25] Optimal and Effective Resource Management in Edge Computing
    Majumder, Darpan
    Kumar, S. Mohan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1201 - 1217
  • [26] Real-Time CPU Scheduling Approach for Mobile Edge Computing System
    Yu, Xiaoyi
    Wang, Ke
    Lin, Wenliang
    Deng, Zhongliang
    SMART GRID AND INNOVATIVE FRONTIERS IN TELECOMMUNICATIONS, SMARTGIFT 2018, 2018, 245 : 32 - 42
  • [27] Opportunistic CPU Sharing in Mobile Edge Computing Deploying the Cloud-RAN
    Ocampo, Andres F.
    Fida, Mah-Rukh
    Botero, Juan F.
    Elmokashfi, Ahmed
    Bryhni, Haakon
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 2201 - 2217
  • [28] On Enabling Sustainable Edge Computing with Renewable Energy Resources
    Li, Wei
    Yang, Ting
    Delicato, Flavia C.
    Pires, Paulo F.
    Tari, Zahir
    Khan, Samee U.
    Zomaya, Albert Y.
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (05) : 94 - 101
  • [29] Online machine learning for auto-scaling in the edge computing?
    da Silva, Thiago Pereira
    Neto, Aluizio Rocha
    Batista, Thais Vasconcelos
    Delicato, Flavia C.
    Pires, Paulo F.
    Lopes, Frederico
    PERVASIVE AND MOBILE COMPUTING, 2022, 87
  • [30] Auto-scaling Applications in Edge Computing: Taxonomy and Challenges
    Taherizadeh, Salman
    Stankovski, Vlado
    INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 158 - 163