Parameter identification in heavy vehicle simulation

被引:0
|
作者
Forsén, A [1 ]
机构
[1] Scania, SE-15187 Sodertalje, Sweden
关键词
Automobile bodies - Computer simulation - Mathematical models - Parameter estimation - Phase shift - Time domain analysis;
D O I
10.1080/00423114.1999.12063094
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experimental data from heavy truck measurements establish parameter values in a multi-body model. Two vehicle configurations and several test cases are investigated, five reruns demonstrate repeatability. Measured and simulated signals are compared in the time domain. Identity in the time domain makes evaluated (filtered, averaged, PSD) signals identical, but the inverse is not necessarily true. Comparisons in the time domain are sensitive to phase shifts. The influence of corresponding test velocity variations is minimised using single obstacle experiments as parameter identification input. Numerical procedures find parameter values minimising simulation-experiment discrepancy, model performance is evaluated by comparison with experimental variation.
引用
收藏
页码:350 / 361
页数:12
相关论文
共 50 条
  • [31] PARAMETER IDENTIFICATION FOR INDUCTION-MOTOR SIMULATION
    BELLINI, A
    DECARLI, A
    LACAVA, M
    AUTOMATICA, 1976, 12 (04) : 383 - 386
  • [32] Projectile Motion Aerodynamic Parameter Identification and Simulation
    Jia, Qingxuan
    Li, Xulong
    Song, Jingzhou
    Gao, Xin
    Chen, Gang
    Zhang, Hongbin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1872 - 1876
  • [33] Parameter Design and Simulation Research of Power System for Electric Vehicle
    Wang, Wenlong
    Liu, Weize
    Tao, Bingquan
    Ma, Jianwei
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 969 - 973
  • [34] Modeling techniques and parameter estimation for the simulation of complex vehicle structures
    Butz, T
    von Stryk, O
    Chucholowski, C
    Truskawa, S
    Wolter, TM
    HIGH PERFORMANCE SCIENTIFIC AND ENGINEERING COMPUTING, 2002, 21 : 333 - 340
  • [35] Parameter Identification and Optimization of an Oceanographic Monitoring Remotely Operated Vehicle
    Rojas, Jorge
    Eichhorn, Mike
    Baatar, Ganzorig
    Matz, Sebastian
    Glotzbach, Thomas
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [36] Hydrodynamic Modeling and Parameter Identification of a Bionic Underwater Vehicle: RobDact
    Cao, Qiyuan
    Wang, Rui
    Zhang, Tiandong
    Wang, Yu
    Wang, Shuo
    CYBORG AND BIONIC SYSTEMS, 2022, 2022
  • [37] Parameter identification of multibody vehicle models using neural networks
    Hobusch, Salim
    Nikelay, Ilker
    Nowakowski, Christine
    Woschke, Elmar
    MULTIBODY SYSTEM DYNAMICS, 2024, 61 (03) : 361 - 380
  • [38] A review of traction battery model and parameter identification in electric vehicle
    Wang, Chunyang
    Xing, Bo
    Zhou, Jiaping
    2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [39] A comparison of H∞ with Kalman filtering in vehicle state and parameter identification
    O'Brien, Richard T., Jr.
    Kiriakidis, Kiriakos
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3954 - +
  • [40] Research Advances on Vehicle Parameter Identification Based on Machine Vision
    Kong, Xuan
    Zhang, Jie
    Deng, Lu
    Liu, Ying-Kai
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (04): : 13 - 30