Parameter identification in heavy vehicle simulation

被引:0
|
作者
Forsén, A [1 ]
机构
[1] Scania, SE-15187 Sodertalje, Sweden
关键词
Automobile bodies - Computer simulation - Mathematical models - Parameter estimation - Phase shift - Time domain analysis;
D O I
10.1080/00423114.1999.12063094
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experimental data from heavy truck measurements establish parameter values in a multi-body model. Two vehicle configurations and several test cases are investigated, five reruns demonstrate repeatability. Measured and simulated signals are compared in the time domain. Identity in the time domain makes evaluated (filtered, averaged, PSD) signals identical, but the inverse is not necessarily true. Comparisons in the time domain are sensitive to phase shifts. The influence of corresponding test velocity variations is minimised using single obstacle experiments as parameter identification input. Numerical procedures find parameter values minimising simulation-experiment discrepancy, model performance is evaluated by comparison with experimental variation.
引用
收藏
页码:350 / 361
页数:12
相关论文
共 50 条
  • [1] Parameter identification in heavy vehicle simulation
    Forsén, A
    DYNAMICS OF VEHICLES ON ROADS AND ON TRACKS, 2000, : 350 - 361
  • [2] Parameter identification of heavy commercial vehicle rollover prediction model
    Zhu TianJun
    Zong ChangFu
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 854 - 858
  • [3] Parameter Identification and Sensitivity Analysis of Heavy-duty Vehicle Tire Model
    Huang T.
    Liu Z.
    Gao Q.
    Wang D.
    Ma D.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2022, 49 (08): : 36 - 44
  • [4] AUTOMATIC VEHICLE IDENTIFICATION FOR HEAVY VEHICLE MONITORING
    AYLAND, N
    DAVIES, P
    SECOND INTERNATIONAL CONFERENCE ON ROAD TRAFFIC MONITORING, 1989, 299 : 152 - 155
  • [5] Vehicle Parameter Identification for Vertical Dynamics
    Cui, Yan
    Kurfess, Thomas R.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2015, 137 (02):
  • [6] Modal parameter identification for regular bridges using vehicle sensing technique: Simulation and experiment
    Jian, Xudong
    Sun, Limin
    Xia, Ye
    BRIDGE MAINTENANCE, SAFETY, MANAGEMENT, LIFE-CYCLE SUSTAINABILITY AND INNOVATIONS, 2021, : 2182 - 2187
  • [7] Driving condition identification based on HHMM model - Application to the simulation of heavy duty vehicle
    Zhu, Tianjun
    Khajepour, Amir
    Zong, Changfu
    Mai, Li
    Deng, Hongchao
    DYNAMICS OF VEHICLES ON ROADS AND TRACKS, 2016, : 663 - 668
  • [8] Parameter identification for dynamic simulation
    Joukhadar, A
    Garat, F
    Laugier, C
    1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 1928 - 1933
  • [9] Vehicle parameter identification based on vehicle frequency response function
    Zhang, Qingxia
    Hou, Jilin
    An, Xinhao
    Jankowski, Lukasz
    Duan, Zhongdong
    Hu, Xiaoyang
    JOURNAL OF SOUND AND VIBRATION, 2023, 542
  • [10] The design simulation and parameter matching optimization of electric drive system for heavy off-road vehicle
    Ren Xiaojing
    Ma Li
    MECHANICAL ENGINEERING, MATERIALS AND ENERGY III, 2014, 483 : 425 - 428