Cobalt Carbodiimide as Negative Electrode for Li-Ion Batteries: Electrochemical Mechanism and Performance

被引:14
|
作者
Arayamparambil, Jeethu Jiju [1 ,2 ]
Mann, Markus [3 ]
Fraisse, Bernard [1 ]
Iadecola, Antonella [4 ]
Dronskowski, Richard [3 ,5 ]
Stievano, Lorenzo [1 ,2 ]
Sougrati, Moulay Tahar [1 ,2 ]
机构
[1] Univ Montpellier, CNRS, Inst Charles Gerhardt Montpellier, 8 Rue Ecole Normale, F-34090 Montpellier, France
[2] CNRS, ALISTORE ERI, 33 Rue St Leu, F-80000 Amiens, France
[3] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany
[4] CNRS, Reseau Stockage Electrochim Energie, 33 Rue St Leu, F-80000 Amiens, France
[5] Shenzhen Polytech, Hoffmann Inst Adv Mat, Shenzhen, Peoples R China
来源
CHEMELECTROCHEM | 2019年 / 6卷 / 19期
关键词
Li-ion batteries; anode materials; carbodiimides; conversion reaction; X-ray absorption spectroscopy; RAY-ABSORPTION SPECTROSCOPY; TRANSITION-METAL CARBODIIMIDES; MULTIVARIATE CURVE RESOLUTION; OF-THE-ART; ANODE MATERIALS; COO ANODE; LITHIUM; OPERANDO; NANOPARTICLES; CAPACITY;
D O I
10.1002/celc.201901264
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cobalt carbodiimide, CoNCN, shows outstanding performance as negative electrode material for Li-ion batteries, maintaining a reversible capacity of 530 mAh g(-1) over 140 cycles at a current density of 540 mA g(-1). The electrochemical lithiation/delithiation mechanism of cobalt carbodiimide was investigated using complementary in situ X-ray diffraction and X-ray absorption spectroscopy. Upon lithiation, CoNCN undergoes a reversible conversion reaction, forming Li2NCN and fcc Co metal nanoparticles, which are transformed back into CoNCN upon delithiation. However, the CoNCN obtained electrochemically after delithiation do not recover the local structure of the pristine phase, and might contain the NCN2- ligand in the cyanamide isomer form (N-C equivalent to N2-). It would be the first time that a transition metal cyanamide isomer is obtained at ambient conditions.
引用
收藏
页码:5101 / 5108
页数:8
相关论文
共 50 条
  • [21] Plated materials: Negative electrode materials for Li-ion batteries.
    Hugener, TA
    Desko, MM
    Jones, NG
    Galasso, F
    Suib, SL
    DiCarlo, JF
    Russell, PG
    Iaconetti, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : A80 - A80
  • [22] Nanostructured tin for use as a negative electrode material in Li-ion batteries
    Whitehead, AH
    Elliott, JM
    Owen, JR
    JOURNAL OF POWER SOURCES, 1999, 81 : 33 - 38
  • [23] Metal hydrides used as negative electrode materials for Li-ion batteries
    Sabrina Sartori
    Fermin Cuevas
    Michel Latroche
    Applied Physics A, 2016, 122
  • [24] Nanostructured tin for use as a negative electrode material in Li-ion batteries
    Whitehead, A.H.
    Elliott, J.M.
    Owen, J.R.
    Journal of Power Sources, 1999, 81 : 33 - 38
  • [25] An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries
    Hassoun, J.
    Panero, S.
    Mulas, G.
    Scrosati, B.
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 928 - 931
  • [26] Electrochemical Oscillation in Li-Ion Batteries
    Li, De
    Sun, Yang
    Yang, Zhenzhong
    Gu, Lin
    Chen, Yong
    Zhou, Haoshen
    JOULE, 2018, 2 (07) : 1265 - 1277
  • [27] Negative electrodes for Li-ion batteries
    Kinoshita, K
    Zaghib, K
    JOURNAL OF POWER SOURCES, 2002, 110 (02) : 416 - 423
  • [28] On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries
    Lestrie, B.
    Bahri, S.
    Sandu, I.
    Roue, L.
    Guyomard, D.
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) : 2801 - 2806
  • [29] Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries
    Zaghib, K
    Simoneau, M
    Armand, M
    Gauthier, M
    JOURNAL OF POWER SOURCES, 1999, 81 : 300 - 305
  • [30] CuS@Cu freestanding electrode via electrochemical corrosion for high performance Li-ion batteries
    Tang, Jun
    Ni, Shibing
    Chen, Qichang
    Zhang, Jicheng
    Yang, Xuelin
    MATERIALS LETTERS, 2017, 201 : 13 - 17