Optimisation of combined collaborative recommender systems

被引:12
|
作者
Kunaver, Matevz [1 ]
Pozrl, Tomaz [1 ]
Pogacnik, Matevz [1 ]
Tasic, Jurij [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, SI-1000 Ljubljana, Slovenia
关键词
user modelling; personalisation; collaborative recommendation; hybrid recommender systems;
D O I
10.1016/j.aeue.2007.04.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new approach to collaborative user modelling is presented in this paper. We have developed a framework that can be used for easy testing of different concepts. We have also introduced three different areas where collaborative modelling can be further improved. For the first phase of testing, we have created a hybrid system based on three different collaborative recommender techniques. Since this system implements multiple collaboration techniques, we decided to call this approach Combined Collaborative Recommender. Although each prediction technique can produce adequate results, we have proved that the combination of these techniques into a unified system provides a much more stable system. It should also be pointed out that these analyses were done using a very large dataset (more than 2 million ratings) providing reliable results. Results of these optimisations are presented along with pointers for further development. (c) 2007 Elsevier GmbH. All rights reserved.
引用
收藏
页码:433 / 443
页数:11
相关论文
共 50 条
  • [1] Collaborative Factorization for Recommender Systems
    Fan, Chaosheng
    Lan, Yanyan
    Guo, Jiafeng
    Lin, Zuoquan
    Cheng, Xueqi
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 949 - 952
  • [2] Recommender Systems and Collaborative Filtering
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    APPLIED SCIENCES-BASEL, 2020, 10 (20):
  • [3] Collaborative tagging in recommender systems
    Ji, Ae-Ttie
    Yeon, Cheol
    Kim, Heung-Nam
    Jo, Geun-Sik
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 377 - 386
  • [4] Collaborative filtering recommender systems
    Ekstrand M.D.
    Riedl J.T.
    Konstan J.A.
    Foundations and Trends in Human-Computer Interaction, 2010, 4 (02): : 81 - 173
  • [5] An Evaluation Methodology for Collaborative Recommender Systems
    Cremonesi, Paolo
    Turrin, Roberto
    Lentini, Eugenio
    Matteucci, Matteo
    FOURTH INTERNATIONAL CONFERENCE ON AUTOMATED SOLUTIONS FOR CROSS MEDIA CONTENT AND MULTI-CHANNEL DISTRIBUTION, PROCEEDINGS, 2008, : 224 - 231
  • [6] Evaluation of Collaborative Filtering for Recommender Systems
    Al-Ghamdi, Maryam
    Elazhary, Hanan
    Mojahed, Aalaa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 559 - 565
  • [7] A framework for collaborative filtering recommender systems
    Bobadilla, Jesus
    Hernando, Antonio
    Ortega, Fernando
    Bernal, Jesus
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14609 - 14623
  • [8] Recommender Systems Using Collaborative Tagging
    Banda, Latha
    Singh, Karan
    Le Hoang Son
    Abdel-Basset, Mohamed
    Pham Huy Thong
    Hiep Xuan Huynh
    Taniar, David
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2020, 16 (03) : 183 - 200
  • [9] Collaborative Variational Autoencoder for Recommender Systems
    Li, Xiaopeng
    She, James
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 305 - 314
  • [10] Optimizing collaborative filtering recommender systems
    Min, SH
    Han, I
    ADVANCES IN WEB INTELLIGENCE, PROCEEDINGS, 2005, 3528 : 313 - 319