An Evaluation Methodology for Collaborative Recommender Systems

被引:28
|
作者
Cremonesi, Paolo [1 ]
Turrin, Roberto [1 ]
Lentini, Eugenio [1 ]
Matteucci, Matteo [1 ]
机构
[1] Politecn Milan, Neptuny, Italy
关键词
D O I
10.1109/AXMEDIS.2008.13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems use statistical and knowledge discovery techniques in order to recommend products to users and to mitigate the problem of information overload. The evaluation of the quality of recommender systems has become an important issue for choosing the best learning algorithms. In this paper we propose an evaluation methodology for collaborative filtering (CF) algorithms. This methodology carries out a clear guided and repeatable evaluation of a CF algorithm. We apply the methodology on two datasets, with different characteristics, using two CF algorithms: singular value decomposition and naive bayesian networks.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 50 条
  • [1] Evaluation of Collaborative Filtering for Recommender Systems
    Al-Ghamdi, Maryam
    Elazhary, Hanan
    Mojahed, Aalaa
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 559 - 565
  • [2] Implementation and Evaluation of Movie Recommender Systems Using Collaborative Filtering
    Salloum, Salam
    Rajamanthri, Dananjaya
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (03) : 189 - 196
  • [3] A Novel Trust Evaluation Mechanism for Collaborative Filtering Recommender Systems
    Xiao, Yang
    Pei, Qingqi
    Liu, Xuefeng
    Yu, Shui
    [J]. IEEE ACCESS, 2018, 6 : 70298 - 70312
  • [4] Collaborative Factorization for Recommender Systems
    Fan, Chaosheng
    Lan, Yanyan
    Guo, Jiafeng
    Lin, Zuoquan
    Cheng, Xueqi
    [J]. SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 949 - 952
  • [5] Recommender Systems and Collaborative Filtering
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (20):
  • [6] Collaborative tagging in recommender systems
    Ji, Ae-Ttie
    Yeon, Cheol
    Kim, Heung-Nam
    Jo, Geun-Sik
    [J]. AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 377 - 386
  • [7] Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems
    Bobadilla, Jesus
    Duenas-Lerin, Jorge
    Ortega, Fernando
    Gutierrez, Abraham
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2024, 8 (06):
  • [8] An Empirical Evaluation of Property Recommender Systems for Wikidata and Collaborative Knowledge Bases
    Zangerle, Eva
    Gassier, Wolfgang
    Pichl, Martin
    Steinhauser, Stefan
    Specht, Guenther
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON OPEN COLLABORATION (OPENSYM), 2016,
  • [9] An Efficient Recommender System Using Collaborative Correlation Methodology
    Prakash, M.
    Pabitha, P.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 962 - 967
  • [10] Collaborative Variational Autoencoder for Recommender Systems
    Li, Xiaopeng
    She, James
    [J]. KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 305 - 314