An Evaluation Methodology for Collaborative Recommender Systems

被引:28
|
作者
Cremonesi, Paolo [1 ]
Turrin, Roberto [1 ]
Lentini, Eugenio [1 ]
Matteucci, Matteo [1 ]
机构
[1] Politecn Milan, Neptuny, Italy
关键词
D O I
10.1109/AXMEDIS.2008.13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems use statistical and knowledge discovery techniques in order to recommend products to users and to mitigate the problem of information overload. The evaluation of the quality of recommender systems has become an important issue for choosing the best learning algorithms. In this paper we propose an evaluation methodology for collaborative filtering (CF) algorithms. This methodology carries out a clear guided and repeatable evaluation of a CF algorithm. We apply the methodology on two datasets, with different characteristics, using two CF algorithms: singular value decomposition and naive bayesian networks.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 50 条
  • [31] Managing Natural Noise in Collaborative Recommender Systems
    Yera Toledo, Raciel
    Martinez Lopez, Luis
    Caballero Mota, Yaile
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 872 - 877
  • [32] Collaborative case-based recommender systems
    Aguzzoli, S
    Avesani, P
    Massa, P
    [J]. ADVANCES IN CASE-BASED REASONING, 2002, 2416 : 460 - 474
  • [33] AN INCREMENTAL COLLABORATIVE FILTERING ALGORITHM FOR RECOMMENDER SYSTEMS
    Komkhao, Maytiyanin
    Li, Zhong
    Halang, Wolfgang A.
    Lu, Jie
    [J]. UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 327 - 332
  • [34] Evolution of Neural Collaborative Filtering for Recommender Systems
    Metsai, Alexandros, I
    Karamitsios, Konstantinos
    Kotrotsios, Konstantinos
    Chatzimisios, Periklis
    Stalidis, George
    Goulianas, Kostas
    [J]. 2022-14TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2022), 2022, : 86 - 90
  • [35] Collaborative recommender systems: Combining effectiveness and efficiency
    Symeonidis, Panagiotis
    Nanopoulos, Alexandros
    Papadopoulos, Apostolos N.
    Manolopoulos, Yannis
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 2995 - 3013
  • [36] Collaborative Deep Forest Learning for Recommender Systems
    Molaei, Soheila
    Havvaei, Amirhossein
    Zare, Hadi
    Jalili, Mahdi
    [J]. IEEE ACCESS, 2021, 9 : 22053 - 22061
  • [37] Tag Based Collaborative Filtering for Recommender Systems
    Liang, Huizhi
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2009, 5589 : 666 - 673
  • [38] Collaborative Knowledge Base Embedding for Recommender Systems
    Zhang, Fuzheng
    Yuan, Nicholas Jing
    Lian, Defu
    Xie, Xing
    Ma, Wei-Ying
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 353 - 362
  • [39] Attention Collaborative Autoencoder for Explicit Recommender Systems
    Chen, Shuo
    Wu, Min
    [J]. ELECTRONICS, 2020, 9 (10) : 1 - 12
  • [40] Neural embedding collaborative filtering for recommender systems
    Huang, Tianlin
    Zhang, Defu
    Bi, Lvqing
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (22): : 17043 - 17057