Spectral modeling of rotating turbulent flows

被引:13
|
作者
Baerenzung, J. [1 ]
Mininni, P. D. [1 ,2 ]
Pouquet, A. [1 ]
Politano, H. [3 ,4 ]
Ponty, Y. [3 ,4 ]
机构
[1] TNT NCAR, Boulder, CO 80307 USA
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[3] Observ Cote Azur, UMR 6202, Lab Cassiopee, F-06304 Nice 4, France
[4] Univ Nice Sophia Antipolis, Observ Cote Azur, UMR 6202, CNRS, F-06304 Nice 4, France
关键词
ISOTROPIC TURBULENCE; SIMULATIONS; SCALES;
D O I
10.1063/1.3292008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical simulations (DNSs), The case of Taylor-Green forcing is considered, a configuration that mimics the flow between two counter-rotating disks as often used in the laboratory. Computations are performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the Earth's atmosphere. We provide several measures of the degree of anisotropy of the small scales and conclude that an isotropic model may suffice at moderate Rossby number, The model, developed previously [J. Baerenzinig, H, Politano, Y, Ponty, and A, Pouquet, "Spectral modeling of turbulent flows and the role of helicity," Phys. Rev. E 77, 046303 (2008)] incorporates eddy viscosity and eddy noise that depend dynamically on the index of the energy spectrum. We show that the model reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of similar to 10(4) and for long times after the onset of the inverse cascade of energy; it is also shown to behave better than either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, "Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures," J. Atmos. Sci. 38, 2747 (1981)] or an under-resolved DNS. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3292008]
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Dispersed phase of particles in rotating turbulent fluid flows
    Pandya, RVR
    Stansell, P
    Cosgrove, J
    PHYSICAL REVIEW E, 2004, 70 (02):
  • [42] Macroscopic effects of the spectral structure in turbulent flows
    Tran T.
    Chakraborty P.
    Guttenberg N.
    Prescott A.
    Kellay H.
    Goldburg W.
    Goldenfeld N.
    Gioia G.
    Nature Physics, 2010, 6 (6) : 438 - 441
  • [43] Reynolds-stress modelling of turbulent rotating flows
    Wang Chen
    Fu Song
    Acta Mechanica Sinica, 1997, 13 : 323 - 330
  • [44] Turbulent Energy Redistribution in Spanwise Rotating Channel Flows
    Koppula, Karuna S.
    Benard, Andre
    Petty, Charles A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (15) : 8905 - 8916
  • [45] UNIVERSAL VELOCITY SIMILARITY IN FULLY TURBULENT ROTATING FLOWS
    KINNEY, RB
    MECHANICAL ENGINEERING, 1967, 89 (12) : 67 - &
  • [46] On the phase lag of turbulent dissipation in rotating tidal flows
    Zhang, Qianjiang
    Wu, Jiaxue
    CONTINENTAL SHELF RESEARCH, 2018, 156 : 23 - 32
  • [47] Asymptotic analysis of equilibrium states for rotating turbulent flows
    Salhi, A
    Lili, T
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1996, 8 (04) : 289 - 308
  • [48] UNIVERSAL VELOCITY SIMILARITY IN FULLY TURBULENT ROTATING FLOWS
    KINNEY, RB
    JOURNAL OF APPLIED MECHANICS, 1967, 34 (02): : 437 - &
  • [49] Spectral simulation of time dependent rotating flows
    del, Arco Crespo, E.
    Maubert, P.
    Randriamampianina, A.
    Bontoux, P.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 4):
  • [50] CAUTIONARY REMARKS ON THE SPECTRAL INTERPRETATION OF TURBULENT FLOWS
    ARMI, L
    FLAMENT, P
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1985, 90 (NC6) : 1779 - +