Speaker independent audio-visual speech recognition

被引:0
|
作者
Zhang, Y [1 ]
Levinson, S [1 ]
Huang, T [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Urbana, IL 61801 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a general framework of integrating multimodal sensory signals for spatial temporal pattern recognition. Statistical methods are used to model time varying events in a collaborative manner such that the inter-modal GO-occurrence are taken into account. We discuss various data fusion strategies, modeling of the inter-modal correlations and extracting statistical parameters for multi-modal models. A bimodal speech recognition system is implemented. A speaker-independent experiment is carried out to test the audio-visual speech recognizer under different kinds of noises from a noise database. Consistent improvements of word recognition accuracy (WRA) are achieved using a cross-validation scheme over different signal-to-noise ratios.
引用
收藏
页码:1073 / 1076
页数:4
相关论文
共 50 条
  • [41] Relevant feature selection for audio-visual speech recognition
    Drugman, Thomas
    Gurban, Mihai
    Thiran, Jean-Philippe
    [J]. 2007 IEEE NINTH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2007, : 179 - +
  • [42] DEEP MULTIMODAL LEARNING FOR AUDIO-VISUAL SPEECH RECOGNITION
    Mroueh, Youssef
    Marcheret, Etienne
    Goel, Vaibhava
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2130 - 2134
  • [43] Weighting schemes for audio-visual fusion in speech recognition
    Glotin, H
    Vergyri, D
    Neti, C
    Potamianos, G
    Luettin, J
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 173 - 176
  • [44] Multistage information fusion for audio-visual speech recognition
    Chu, SM
    Libal, V
    Marcheret, E
    Neti, C
    Potamianos, G
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 1651 - 1654
  • [45] Dynamic Bayesian Networks for Audio-Visual Speech Recognition
    Ara V. Nefian
    Luhong Liang
    Xiaobo Pi
    Xiaoxing Liu
    Kevin Murphy
    [J]. EURASIP Journal on Advances in Signal Processing, 2002
  • [46] Audio-Visual Efficient Conformer for Robust Speech Recognition
    Burchi, Maxime
    Timofte, Radu
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2257 - 2266
  • [47] On Dynamic Stream Weighting for Audio-Visual Speech Recognition
    Estellers, Virginia
    Gurban, Mihai
    Thiran, Jean-Philippe
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (04): : 1145 - 1157
  • [48] Audio-visual speech recognition using deep learning
    Noda, Kuniaki
    Yamaguchi, Yuki
    Nakadai, Kazuhiro
    Okuno, Hiroshi G.
    Ogata, Tetsuya
    [J]. APPLIED INTELLIGENCE, 2015, 42 (04) : 722 - 737
  • [49] DAVIS: Driver's Audio-Visual Speech Recognition
    Ivanko, Denis
    Ryumin, Dmitry
    Kashevnik, Alexey
    Axyonov, Alexandr
    Kitenko, Andrey
    Lashkov, Igor
    Karpov, Alexey
    [J]. INTERSPEECH 2022, 2022, : 1141 - 1142
  • [50] Towards practical deployment of audio-visual speech recognition
    Potamianos, G
    Neti, C
    Huang, J
    Connell, JH
    Chu, S
    Libal, V
    Marcheret, E
    Haas, N
    Jiang, J
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 777 - 780