Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer's Disease Pathology and Improve Cognitive Deficits

被引:80
|
作者
Chen, Yi-An [1 ,2 ]
Lu, Cheng-Hsiu [2 ,3 ]
Ke, Chien-Chih [2 ,4 ,5 ,6 ]
Chiu, Sain-Jhih [2 ]
Jeng, Fong-Shya [2 ]
Chang, Chi-Wei [7 ]
Yang, Bang-Hung [7 ,8 ]
Liu, Ren-Shyan [1 ,2 ,7 ,8 ,9 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Clin Med, Taipei 112, Taiwan
[2] Natl Comprehens Mouse Phenotyping & Drug Testing, Mol & Genet Imaging Core Taiwan Mouse Clin, Taipei 112, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Ind PhD Program Biomed Sci & Engn, Taipei 112, Taiwan
[4] Kaohsiung Med Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 807, Taiwan
[5] Kaohsiung Med Univ, Drug Dev & Value Creat Res Ctr, Kaohsiung 807, Taiwan
[6] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 807, Taiwan
[7] Taipei Vet Gen Hosp, Dept Nucl Med, Natl PET & Cyclotron Ctr NPCC, Taipei 112, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Dept Biomed Imaging & Radiol Sci, Taipei 112, Taiwan
[9] Cheng Hsin Gen Hosp, Dept Nucl Med, Taipei 112, Taiwan
关键词
Alzheimer's disease; exosome; mesenchymal stem cell; cell-free therapy; F-18-FDG; REGULATING INFLAMMATORY RESPONSES; BLOOD-BRAIN-BARRIER; EXTRACELLULAR VESICLES; SECRETASE INHIBITOR; IN-VIVO; MODEL; BIOGENESIS; DRUG; ACTIVATION; PHYSIOLOGY;
D O I
10.3390/biomedicines9060594
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The accumulation of extracellular beta-amyloid (A beta) plaques within the brain is unique to Alzheimer's disease (AD) and thought to induce synaptic deficits and neuronal loss. Optimal therapies should tackle the core AD pathophysiology and prevent the decline in memory and cognitive functions. This study aimed to evaluate the therapeutic performance of mesenchymal stem cell-derived exosomes (MSC-exosomes), which are secreted membranous elements encapsulating a variety of MSC factors, on AD. A human neural cell culture model with familial AD (FAD) mutations was established and co-cultured with purified MSC-exosomes. 2-[F-18]Fluoro-2-deoxy-d-glucose ([F-18]FDG) and novel object recognition (NOR) testing were performed before/after treatment to evaluate the therapeutic effect in vivo. The AD-related pathology and the expression of neuronal memory/synaptic plasticity-related genes were also evaluated. The results showed that MSC-exosomes reduced A beta expression and restored the expression of neuronal memory/synaptic plasticity-related genes in the cell model. [F-18]FDG-PET imaging and cognitive assessment revealed a significant improvement in brain glucose metabolism and cognitive function in AD transgenic mice. The phase of neurons and astrocytes in the brain of AD mice were also found to be regulated after treatment with MSC-exosomes. Our study demonstrates the therapeutic mechanism of MSC-exosomes and provides an alternative therapeutic strategy based on cell-free MSC-exosomes for the treatment of AD.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes for Angiogenesis
    Chengwei Ju
    Youngjun Li
    Yan Shen
    Yutao Liu
    Jingwen Cai
    Naifeng Liu
    Gengshan Ma
    Yaoliang Tang
    Journal of Cardiovascular Translational Research, 2018, 11 : 429 - 437
  • [32] Boosting the Biogenesis and Secretion of Mesenchymal Stem Cell-Derived Exosomes
    Wang, Jinli
    Bonacquisti, Emily E.
    Brown, Adam D.
    Nguyen, Juliane
    CELLS, 2020, 9 (03)
  • [33] Mesenchymal Stem Cell-Derived Exosomes Mediate Neurovascular Protection
    Anderson, J. D.
    Rossignol, J.
    Dunbar, G. L.
    Yavagal, D.
    EL-Andaloussi, S.
    Lehtio, J.
    Nolta, J. A.
    CELL TRANSPLANTATION, 2017, 26 (04) : 704 - 704
  • [34] Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Comprehensive Review
    Wu, Kevin Y.
    Ahmad, Hamza
    Lin, Grace
    Carbonneau, Marjorie
    Tran, Simon D.
    PHARMACEUTICS, 2023, 15 (04)
  • [35] Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes for Angiogenesis
    Ju, Chengwei
    Li, Youngjun
    Shen, Yan
    Liu, Yutao
    Cai, Jingwen
    Liu, Naifeng
    Ma, Gengshan
    Tang, Yaoliang
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2018, 11 (05) : 429 - 437
  • [36] The role of mesenchymal stem cell-derived exosomes in tumor progression
    Harrel, Carl Randall
    Djonov, Valentin
    Volarevic, Ana
    Pavlovic, Dragica
    Volarevic, Vladislav
    BIOCELL, 2022, 47 (08) : 1757 - 1769
  • [37] Mesenchymal Stem Cell-Derived Exosomes and Their Therapeutic Potential for Osteoarthritis
    Kim, Gi Beom
    Shon, Oog-Jin
    Seo, Min-Soo
    Choi, Young
    Park, Wook Tae
    Lee, Gun Woo
    BIOLOGY-BASEL, 2021, 10 (04):
  • [38] Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis
    Vadhan, Anupama
    Gupta, Tanvi
    Hsu, Wen-Li
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [39] Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes
    Zhang, Fan
    Zhang, Leisheng
    Yu, Hao
    CURRENT STEM CELL RESEARCH & THERAPY, 2024, 19 (09) : 1195 - 1209
  • [40] Application of mesenchymal stem cell-derived exosomes in kidney diseases
    Gang, Deng
    Yu, Chang Jiang
    Zhu, Shuoji
    Zhu, Ping
    Nasser, M., I
    CELLULAR IMMUNOLOGY, 2021, 364