Sensitivity to chromatic and luminance contrast and its neuronal substrates

被引:6
|
作者
Lee, Barry B. [1 ,2 ,3 ]
机构
[1] SUNY Coll Optometry, Dept Biol Sci, Grad Ctr Vis Res, 33 West 42nd St, New York, NY 10036 USA
[2] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
[3] Kalklage 1c, D-37077 Gottingen, Germany
关键词
MACAQUE GANGLION-CELLS; TEMPORAL-MODULATION SENSITIVITY; EYE-MOVEMENTS; COLOR-VISION; RED-GREEN; RESPONSES; MECHANISMS; PATHWAYS; FLICKER;
D O I
10.1016/j.cobeha.2019.08.006
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Human sensitivity to changes in luminance or chromaticity differ as a function of temporal or spatial frequency. Luminance sensitivity is band-pass in shape, while chromatic sensitivity curves are low-pass, along both L-M cone opponent (red- green) and S-cone opponent (blue-yellow) axes, where L, M, and S refer to the long-wavelength middle-wavelength and short-wavelength sensitive cones. Temporal sensitivity curves are supported by the magnocellular pathway for luminance, the parvocellular pathway for L-M modulation and the koniocellular pathway for S-cone modulation. This division largely holds for spatial contrast sensitivity. But there are discrepancies. For example, parvo and konio cells respond to higher temporal and spatial frequencies than can be perceived. Also, the role of eye movements in spatial contrast sensitivity - and spatial vision as a whole - is now debated; the spatial and temporal properties of eye movements profoundly influence the spatiotemporal signal leaving the retina. Finally, human psychophysical thresholds for color and luminance seem largely independent. Yet recent cortical data show much combination of magno, parvo, and konio signals in the cortex. This oddity remains puzzling but may have to do with the segregation of different types of information into dorsal and ventral cortical streams.
引用
收藏
页码:156 / 162
页数:7
相关论文
共 50 条
  • [41] FUNCTIONAL AND ANATOMICAL ASPECTS OF VISUAL POTENTIALS TO LUMINANCE AND CHROMATIC CONTRAST
    PREVIC, FH
    COFFEY, DJ
    [J]. INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1986, 29 (3-4) : 182 - 182
  • [42] Spatial contrast sensitivity with chromatic stimuli
    Kawabata, Y
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2000, 35 (3-4) : 53 - 53
  • [43] Chromatic contrast-sensitivity functions
    Plantier, J.
    Aubry, J-P
    Vienot, F.
    Ossard, G.
    Rournes, C.
    [J]. PERCEPTION, 2007, 36 : 198 - 198
  • [44] CHROMATIC CONTRAST SENSITIVITY OF PARVOCELLULAR NEURONS
    DERRINGTON, A
    [J]. PERCEPTION, 1991, 20 (01) : 94 - 94
  • [45] Chromatic contrast sensitivity in anomalous trichromats
    Liggins, E. P.
    Moorhead, I. R.
    Murray, I. J.
    Ward, P. A.
    [J]. PERCEPTION, 2001, 30 : 14 - 14
  • [46] THE GAP EFFECT REVISITED - SLOW CHANGES IN CHROMATIC SENSITIVITY AS AFFECTED BY LUMINANCE AND CHROMATIC BORDERS
    ESKEW, RT
    [J]. VISION RESEARCH, 1989, 29 (06) : 717 - 729
  • [47] Chromatic contrast sensitivity without correction for chromatic aberration.
    Valberg, A
    Fosse, P
    Gjerde, T
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 4173 - 4173
  • [49] Spatial Contrast Sensitivity to Polarization and Luminance in Octopus
    Nahmad-Rohen, Luis
    Vorobyev, Misha
    [J]. FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [50] Contrast sensitivity invariance with surround luminance changes
    Gutierrez, M. J.
    Aparicio, J. A.
    Menendez, J. A.
    Matesanz, B. M.
    Arranz, I.
    Vizmanos, J. G.
    Gonzalez, V. R.
    Mar, S.
    [J]. OPTICA PURA Y APLICADA, 2008, 41 (01): : 1 - 7