Consistent Estimation of the Filtering and Marginal Smoothing Distributions in Nonparametric Hidden Markov Models

被引:14
|
作者
De Castro, Yohann [1 ]
Gassiat, Elisabeth [1 ]
Le Corff, Sylvain [1 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
关键词
Hidden Markov models; nonparametric estimation; filtering; smoothing; spectral methods; MAXIMUM-LIKELIHOOD-ESTIMATION; INFERENCE;
D O I
10.1109/TIT.2017.2696959
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the filtering and smoothing recursions in nonparametric finite state space hidden Markov models (HMMs) when the parameters of the model are unknown and replaced by estimators. We provide an explicit and time uniform control of the filtering and smoothing errors in total variation norm as a function of the parameter estimation errors. We prove that the risk for the filtering and smoothing errors may be uniformly upper bounded by the L-1-risk of the estimators. It has been proved very recently that statistical inference for finite state space nonparametric HMMs is possible. We study how the recent spectral methods developed in the parametric setting may be extended to the nonparametric framework and we give explicit upper bounds for the L-2-risk of the nonparametric spectral estimators. In the case where the observation space is compact, this provides explicit rates for the filtering and smoothing errors in total variation norm. The performance of the spectral method is assessed with simulated data for both the estimation of the (nonparametric) conditional distribution of the observations and the estimation of the marginal smoothing distributions.
引用
收藏
页码:4758 / 4777
页数:20
相关论文
共 50 条
  • [1] Consistent order estimation for nonparametric hidden Markov models
    Lehericy, Luc
    BERNOULLI, 2019, 25 (01) : 464 - 498
  • [2] Filtering and Smoothing State Estimation for Flag Hidden Markov Models
    Doty, Kyle
    Roy, Sandip
    Fischer, Thomas R.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7042 - 7047
  • [3] Nonparametric Density Estimation in Hidden Markov Models
    C.C.Y. Dorea
    L.C. Zhao
    Statistical Inference for Stochastic Processes, 2002, 5 (1) : 55 - 64
  • [4] Identifiability and consistent estimation of nonparametric translation hidden markov models with general state space
    Gassiat, Élisabeth
    Le Corff, Sylvain
    Lehéricy, Luc
    1600, Microtome Publishing (21):
  • [5] Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space
    Gassiat, Elisabeth
    Le Corff, Sylvain
    Lehericy, Luc
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [6] Minimax Adaptive Estimation of Nonparametric Hidden Markov Models
    De Castro, Yohann
    Gassiat, Elisabeth
    Lacour, Claire
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [7] Sequential Monte Carlo methods for filtering and smoothing in hidden Markov models
    Chen, Y
    Lai, TL
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 544 - 544
  • [8] RISK-SENSITIVE FILTERING AND SMOOTHING FOR HIDDEN MARKOV-MODELS
    DEY, S
    MOORE, JB
    SYSTEMS & CONTROL LETTERS, 1995, 25 (05) : 361 - 366
  • [9] Nonparametric identification and maximum likelihood estimation for hidden Markov models
    Alexandrovich, G.
    Holzmann, H.
    Leister, A.
    BIOMETRIKA, 2016, 103 (02) : 423 - 434
  • [10] Filtering on hidden Markov models
    Kim, NS
    Kim, DK
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (09) : 253 - 255