RISK-SENSITIVE FILTERING AND SMOOTHING FOR HIDDEN MARKOV-MODELS

被引:35
|
作者
DEY, S
MOORE, JB
机构
[1] Cooperative Research Centre for Robust and Adaptive Systems, Department of Systems Engineering, Research School of Information Sciences and Engineering, Canberra
关键词
HIDDEN MARKOV MODEL; RISK-SENSITIVE FILTERING; INFORMATION STATE; FIXED-INTERVAL SMOOTHING;
D O I
10.1016/0167-6911(94)00093-B
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the problem of risk-sensitive filtering and smoothing for discrete-time Hidden Markov Models (HMM) with finite-discrete states. The objective of risk-sensitive filtering is to minimise the expectation of the exponential of the squared estimation error weighted by a risk-sensitive parameter. We use the so-called Reference Probability Method in solving this problem. We achieve finite-dimensional linear recursions in the information state, and thereby the state estimate that minimises the risk-sensitive cost index. Also, fixed-interval smoothing results are derived. We show that L(2) or risk-neutral filtering for HMMs can be extracted as a limiting case of the risk-sensitive filtering problem when the risk-sensitive parameter approaches zero.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [1] Event-triggered smoothing for hidden Markov models: Risk-sensitive and MMSE results
    Cheng, Meiqi
    Shi, Dawei
    Chen, Tongwen
    AUTOMATICA, 2021, 134
  • [2] Risk-sensitive filtering and smoothing for continuous-time Markov processes
    Malcolm, WP
    Elliott, RJ
    James, MR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (05) : 1731 - 1738
  • [3] Even Triggered Risk-Sensitive State Estimation for Hidden Markov Models
    Xu, Jiapeng
    Ho, Daniel W. C.
    Li, Fangfei
    Yang, Wen
    Tang, Yang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (10) : 4276 - 4283
  • [4] Risk-sensitive optimal control of hidden Markov models: Structural results
    FernandezGaucherand, E
    Marcus, SI
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) : 1418 - 1422
  • [5] Fast convergence identification of hidden Markov models using risk-sensitive filters
    Thorne, JS
    Moore, JB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) : 2461 - 2472
  • [6] Risk-sensitive filtering for jump Markov linear systems
    Orguner, Umut
    Demirekler, Muebeccel
    AUTOMATICA, 2008, 44 (01) : 109 - 118
  • [7] Risk-sensitive filtering and smoothing via reference probability methods
    Dey, S
    Moore, JB
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (11) : 1587 - 1591
  • [8] Risk-sensitive filtering and smoothing via reference probability methods
    Australian Natl Univ, Canberra
    IEEE Trans Autom Control, 11 (1587-1591):
  • [9] Risk-sensitive and risk-neutral control for continuous-time hidden Markov models
    James, MR
    Elliott, RJ
    APPLIED MATHEMATICS AND OPTIMIZATION, 1996, 34 (01): : 37 - 50
  • [10] Risk-sensitive filtering and smoothing for jump Markov non-linear systems based on unscented transform
    Li, W.
    Jia, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (11): : 2621 - 2630