Self-similar solutions with algebraic decay for a non-local coagulation equation

被引:0
|
作者
Ai, Shangbing [1 ]
机构
[1] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
关键词
D O I
10.1088/0951-7715/23/3/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Herrmann et al (2009 C. R. Math. 347 909-14) established the existence of self-similar solutions with algebraic decay at infinity for a coagulation equation with non-local drift. In this paper we obtain some qualitative properties of these solutions, including estimates for the coefficient of their algebraic decay.
引用
收藏
页码:579 / 587
页数:9
相关论文
共 50 条
  • [21] Self-Similar Solutions of the Boltzmann Equation for Non-Maxwell Molecules
    A. V. Bobylev
    C. Cercignani
    Journal of Statistical Physics, 2002, 108 : 713 - 717
  • [22] Self-similar solutions of the Boltzmann equation for non-Maxwell molecules
    Bobylev, AV
    Cercignani, C
    JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (3-4) : 713 - 717
  • [23] Multiplicity of self-similar solutions for a critical equation
    Furtado, Marcelo F.
    da Silva, Joao Pablo P.
    Xavier, Magda S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) : 2732 - 2743
  • [24] Self-similar solutions of the cubic wave equation
    Bizon, P.
    Breitenlohner, P.
    Maison, D.
    Wasserman, A.
    NONLINEARITY, 2010, 23 (02) : 225 - 236
  • [25] On self-similar solutions of the vortex filament equation
    Gamayun, O.
    Lisovyy, O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [26] SELF-SIMILAR GROOVING SOLUTIONS TO THE MULLINS' EQUATION
    Kalantarova, Habiba, V
    Novick-Cohen, Amy
    QUARTERLY OF APPLIED MATHEMATICS, 2021, 79 (01) : 1 - 26
  • [27] Self-similar solutions of the Boltzmann equation and their applications
    Bobylev, AV
    Cercignani, C
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 1039 - 1071
  • [28] SELF-SIMILAR GROOVING SOLUTIONS TO THE MULLINS’ EQUATION
    Kalantarova H.V.
    Novick-Cohen A.
    Kalantarova, Habiba V. (kalantarova@campus.technion.ac.il), 1600, American Mathematical Society (79): : 1 - 26
  • [29] Self-similar solutions of a semilinear heat equation
    Choi, SY
    Kwak, M
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (01): : 125 - 133
  • [30] ON SELF-SIMILAR SOLUTIONS TO THE HOMOGENEOUS BOLTZMANN EQUATION
    Cannone, Marco
    Karch, Grzegorz
    KINETIC AND RELATED MODELS, 2013, 6 (04) : 801 - 808