On guaranteed parameter estimation of a multiparameter linear regression process

被引:5
|
作者
Kuechler, Uwe [1 ]
Vasiliev, Vyacheslav A. [2 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Tomsk State Univ, Dept Appl Math & Cybernet, Tomsk 634050, Russia
关键词
Identification methods; System identification; Estimation theory; Statistical analysis; Delay analysis; Sequential identification;
D O I
10.1016/j.automatica.2010.01.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a sequential estimation procedure for the unknown parameters of a continuous-time stochastic linear regression process. As an example, the sequential estimation problem of two dynamic parameters in stochastic linear systems with memory and in autoregressive processes is solved. The estimation procedure is based on the least squares method with weights and yields estimators with guaranteed accuracy in the sense of the L-q-norm for fixed q >= 2. The proposed procedure works in the mentioned examples for all possible values of unknown dynamic parameters on the plane R-2 for the autoregressive processes and on the plane R2 with the exception of some lines for the linear stochastic delay equations. The asymptotic behaviour of the duration of observations is determined. The general estimation procedure is designed for two or more parametric models. It is shown that the proposed procedure can be applied to the sequential parameter estimation problem of affine stochastic delay differential equations and autoregressive processes of an arbitrary order. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [31] Asymptotically normal estimation of a parameter in a linear-fractional regression problem
    Linke, YY
    Sakhanenko, AI
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (01) : 125 - 137
  • [32] An alternative algorithm of the empirical likelihood estimation for the parameter of a linear regression model
    Ozdemir, Senay
    Arslan, Olcay
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 1913 - 1921
  • [33] Parameter Estimation for Semi-parametric Regression Model with Linear Constraints
    Xia, Yafeng
    Wu, Yongdong
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 355 - 359
  • [34] Moving-horizon Guaranteed Parameter Estimation
    Artzova, Petra
    Paulen, Radoslav
    IFAC PAPERSONLINE, 2019, 52 (01): : 112 - 117
  • [35] Application of Evolutionary Algorithms in Guaranteed Parameter Estimation
    Goerke, Thilo
    Engell, Sebastian
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 5100 - 5105
  • [36] Guaranteed Parameter Estimation for Discrete Energy Minimization
    Li, Mengtian
    Huber, Daniel
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 473 - 482
  • [37] Interval Superposition Arithmetic for Guaranteed Parameter Estimation
    Su, Junyan
    Zha, Yanlin
    Wang, Kai
    Villanueva, Mario E.
    Paulen, Radoslav
    Houska, Boris
    IFAC PAPERSONLINE, 2019, 52 (01): : 574 - 579
  • [38] Adaptive Parameter Estimation with Guaranteed Prescribed Performance
    Yang, Juan
    Na, Jing
    Wu, Xing
    Guo, Yu
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 2515 - 2520
  • [39] Adaptive Quantum Process Tomography via Linear Regression Estimation
    Yu, Qi
    Dong, Daoyi
    Wang, Yuanlong
    Petersen, Ian R.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4173 - 4178
  • [40] On guaranteed estimation of the mean of an autoregressive process
    Konev, V
    Pergamenshchikov, S
    ANNALS OF STATISTICS, 1997, 25 (05): : 2127 - 2163