Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells

被引:11
|
作者
Ullah, Sami [1 ,2 ]
Din, Muhammad Faraz Ud [1 ]
Kasi, Jafar Khan [2 ]
Kasi, Ajab Khan [2 ]
Vegso, Karol [1 ,3 ]
Kotlar, Mario [4 ]
Micusik, Matej [5 ]
Jergel, Matej [1 ,3 ]
Nadazdy, Vojtech [1 ,3 ]
Siffalovic, Peter [1 ,3 ]
Majkova, Eva [1 ,3 ]
Fakharuddin, Azhar [6 ]
机构
[1] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[2] Univ Balochistan, Dept Phys, Quetta 87300, Pakistan
[3] Slovak Acad Sci, Ctr Adv Mat Applicat, Bratislava 84511, Slovakia
[4] Slovak Univ Technol Bratislava, Ctr Nanodiagnost Mat, Bratislava 81243, Slovakia
[5] Slovak Acad Sci, Polymer Inst, Bratislava 84541, Slovakia
[6] Univ Konstanz, Dept Phys, D-78464 Constance, Germany
关键词
mesoporous tin dioxide; anodization; electron transport layer; perovskite solar cells; power conversion efficiency; NANOPOROUS TIN OXIDE; ELECTROCHEMICAL ANODIZATION; EFFICIENT; PERFORMANCE; CH3NH3PBI3; MANAGEMENT; STABILITY;
D O I
10.1021/acsanm.2c00840
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO2) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO2 (mSnO(2)) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO2 ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO2 ETL based on the fabrication of two consecutive m-SnO2 layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO2 ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO2. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO2 layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO2 ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO2.
引用
收藏
页码:7822 / 7830
页数:9
相关论文
共 50 条
  • [21] Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger
    Huang, Shumin
    Li, Peiyu
    Wang, Jing
    Huang, Jacob Chih-Ching
    Xue, Qifan
    Fu, Nianqing
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [22] Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells
    Chen, Yun
    Xu, Cong
    Xiong, Jian
    Zhang, Zheling
    Zhang, Xiuyun
    Yang, Junliang
    Xue, Xiaogang
    Yang, Dong
    Zhang, Jian
    ORGANIC ELECTRONICS, 2018, 58 : 294 - 300
  • [23] SnO2 electron transport layer modified with gentian violet for perovskite solar cells with enhanced performance
    Cheng, Nian
    Cao, Yang
    Li, Weiwei
    Yu, Zhen
    Liu, Zhen
    Lei, Bao
    Zi, Wei
    Xiao, Zhenyu
    Tu, Youchao
    Rodriguez-Gallegos, Carlos D.
    ORGANIC ELECTRONICS, 2022, 108
  • [24] Poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer for perovskite solar cells with improved performance
    Wang, Di
    Chen, Shan-Ci
    Zheng, Qingdong
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (39) : 12204 - 12210
  • [25] SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells
    Zhou, Juntian
    Lyu, Mei
    Zhu, Jun
    Li, Guannan
    Li, Yitong
    Jin, Suzhe
    Song, Jialei
    Niu, Haihong
    Xu, Jinzhang
    Zhou, Ru
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03): : 3052 - 3063
  • [26] Graphdiyne oxide doped SnO2 electron transport layer for high performance perovskite solar cells
    Yao, Lili
    Zhao, Min
    Liu, Le
    Chen, Siqi
    Wang, Jin
    Zhao, Chengjie
    Jia, Zhiyu
    Pang, Shuping
    Guo, Xin
    Jiu, Tonggang
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (18) : 6913 - 6922
  • [27] Interconnected SnO2 Nanocrystals Electron Transport Layer for Highly Efficient Flexible Perovskite Solar Cells
    Sun, Qiang
    Li, Hao
    Gong, Xiu
    Ban, Huaxia
    Shen, Yan
    Wang, Mingkui
    SOLAR RRL, 2020, 4 (02)
  • [28] Systematic investigation of metal dopants and mechanism for the SnO2 electron transport layer in perovskite solar cells
    Gao, Liguo
    He, Zhen
    Xu, Cai
    Su, Yingjie
    Hu, Jingjing
    Ma, Tingli
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (10) : 7229 - 7238
  • [29] Solvent engineering of SnO2 electron transport layer for high-performance perovskite solar cells
    Zhang, Shufang
    Jia, Xiangrui
    Geng, Quanming
    He, Zhengyan
    Hu, Yanqiang
    Gao, Yushuang
    Yang, Shuo
    Yao, Changlin
    Zhang, Qi
    Wang, Dehua
    Wu, Yunyi
    SURFACES AND INTERFACES, 2023, 41
  • [30] Compact SnO2/Mesoporous TiO2 Bilayer Electron Transport Layer for Perovskite Solar Cells Fabricated at Low Process Temperature
    Lee, Junyeong
    Kim, Jongbok
    Kim, Chang-Su
    Jo, Sungjin
    NANOMATERIALS, 2022, 12 (04)