Orthonormal mode sets for the two-dimensional fractional Fourier transformation

被引:19
|
作者
Alieva, Tatiana
Bastiaans, Martin J.
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, E-28040 Madrid, Spain
[2] Tech Univ Eindhoven, Fac Elektrotech, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1364/OL.32.001226
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A family of orthonormal mode sets arises when Hermite-Gauss modes propagate through lossless first-order optical systems. It is shown that the modes at the output of the system are eigenfunctions for the symmetric fractional Fourier transformation if and only if the system is described by an orthosymplectic ray transformation matrix. Essentially new orthonormal mode sets can be obtained by letting helical Laguerre-Gauss modes propagate through an antisymmetric fractional Fourier transformer. The properties of these modes and their representation on the orbital Poincare sphere are studied. (c) 2007 Optical Society of America.
引用
收藏
页码:1226 / 1228
页数:3
相关论文
共 50 条
  • [1] TWO-DIMENSIONAL FOURIER TRANSFORMATION ALGORITHM
    GRIGORYAN, AM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1984, 27 (10): : 52 - 57
  • [2] Nonseparable two-dimensional fractional Fourier transform
    Sahin, A
    Kutay, MA
    Ozaktas, HM
    [J]. APPLIED OPTICS, 1998, 37 (23): : 5444 - 5453
  • [3] Programmable two-dimensional optical fractional Fourier processor
    Rodrigo, Jose A.
    Alieva, Tatiana
    Calvo, Maria L.
    [J]. OPTICS EXPRESS, 2009, 17 (07): : 4976 - 4983
  • [4] Two-dimensional affine generalized fractional Fourier transform
    Pei, SC
    Ding, JJ
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (04) : 878 - 897
  • [5] Application of the two-dimensional fractional-order Fourier transformation to particle field digital holography
    Coëtmellec, S
    Lebrun, D
    Özkul, C
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (08) : 1537 - 1546
  • [6] Quantitation of mixtures from two-dimensional data sets using orthonormal functions
    Jones, R
    [J]. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1995, 13 (12) : 1437 - 1440
  • [7] AN ALGORITHM OF TWO-DIMENSIONAL FOURIER TRANSFORMATION WITH MIXED BASE
    VASYUK, GI
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1982, 25 (12): : 52 - 55
  • [8] A NEW TWO-DIMENSIONAL FAST FOURIER TRANSFORMATION ALGORITHM
    SEREDA, LA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1983, 26 (07): : 18 - 22
  • [9] Two-dimensional fractional Fourier transform and some of its properties
    Zayed, Ahmed
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (07) : 553 - 570
  • [10] Fractional Fourier transform of two-dimensional signal with DSP device
    Cornejo, J
    Torres, Y
    [J]. RIAO/OPTILAS 2004: 5TH IBEROAMERICAN MEETING ON OPTICS AND 8TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, PTS 1-3: ICO REGIONAL MEETING, 2004, 5622 : 1310 - 1315