Nonseparable two-dimensional fractional Fourier transform

被引:25
|
作者
Sahin, A [1 ]
Kutay, MA [1 ]
Ozaktas, HM [1 ]
机构
[1] Bilkent Univ, Dept Elect Engn, TR-06533 Ankara, Turkey
来源
APPLIED OPTICS | 1998年 / 37卷 / 23期
关键词
D O I
10.1364/AO.37.005444
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Previous generalizations of the fractional Fourier transform to two dimensions assumed separable kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform that includes the separable definition as a special case. Its digital and optical implementations are presented. The usefulness of the nonseparable transform is justified with an image-restoration example. (C) 1998 Optical Society of America.
引用
收藏
页码:5444 / 5453
页数:10
相关论文
共 50 条
  • [1] Two-dimensional affine generalized fractional Fourier transform
    Pei, SC
    Ding, JJ
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (04) : 878 - 897
  • [2] Two-dimensional fractional Fourier transform and some of its properties
    Zayed, Ahmed
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (07) : 553 - 570
  • [3] Fractional Fourier transform of two-dimensional signal with DSP device
    Cornejo, J
    Torres, Y
    [J]. RIAO/OPTILAS 2004: 5TH IBEROAMERICAN MEETING ON OPTICS AND 8TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, PTS 1-3: ICO REGIONAL MEETING, 2004, 5622 : 1310 - 1315
  • [4] Two-dimensional sparse fractional Fourier transform and its applications
    Wei, Deyun
    Yang, Jun
    [J]. SIGNAL PROCESSING, 2022, 201
  • [5] Two-dimensional nonseparable multiwavelet transform and its application
    Wajcer, D
    Stanhill, D
    Zeevi, YY
    [J]. PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 61 - 64
  • [6] Two dimensional discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    [J]. SIGNAL PROCESSING, 1998, 67 (01) : 99 - 108
  • [7] Two-dimensional Fourier transform rheology
    van Dusschoten, D
    Wilhelm, M
    Spiess, HW
    [J]. JOURNAL OF RHEOLOGY, 2001, 45 (06) : 1319 - 1339
  • [8] On structure of two-dimensional Fourier transform
    Zhang, TY
    Xing, QB
    Jiang, QC
    [J]. ICEMI '97 - CONFERENCE PROCEEDINGS: THIRD INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, 1997, : 642 - 644
  • [9] A two-dimensional discrete fractional Fourier transform-based pansharpening scheme
    Saxena, Nidhi
    Sharma, K. K.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (16) : 6098 - 6115
  • [10] APPLICATION AND GRAPHICAL INTERPRETATION OF A NEW TWO-DIMENSIONAL QUATERNION FRACTIONAL FOURIER TRANSFORM
    Parmar, Khinal
    Gorty, V. R. Lakshmi
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (04): : 561 - 575