Rao-Blackwellised parallel MCMC

被引:0
|
作者
Schwedes, Tobias [1 ]
Calderhead, Ben [1 ]
机构
[1] Imperial Coll London, Dept Math, London, England
关键词
CHAIN MONTE-CARLO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple proposal Markov chain Monte Carlo (MP-MCMC) as introduced by Calderhead (2014) allow for computationally efficient and parallelisable inference, whereby multiple states are proposed and computed simultaneously. In this paper, we improve the resulting integral estimators by sequentially using the multiple states within a RaoBlackwellised estimator. We further propose a novel adaptive Rao-Blackwellised MP-MCMC algorithm, which generalises the adaptive MCMC algorithm introduced by Haario et al. (2001) to allow for multiple proposals. We prove its asymptotic unbiasedness, and demonstrate significant improvements in sampling efficiency through numerical studies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Study of the Rao-Blackwellised Particle Filter for Efficient and Accurate Vision-Based SLAM
    Robert Sim
    Pantelis Elinas
    James J. Little
    International Journal of Computer Vision, 2007, 74 : 303 - 318
  • [42] Rao-Blackwellised Particle Filter for Star-Convex Extended Target Tracking Models
    Ozkan, Emre
    Wahlstrom, Niklas
    Godsill, Simon J.
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1193 - 1199
  • [43] Monocular SLAM using a rao-blackwellised particle filter with exhaustive pose space search
    Tomono, Masahiro
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 2421 - 2426
  • [44] Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter
    Li, P
    Goodall, R
    Kadirkamanathan, V
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2004, 151 (06): : 727 - 738
  • [45] Stereo vision based SLAM using Rao-Blackwellised particle filter附视频
    Eryong WU Gongyan LI Zhiyu XIANG Jilin LIU Department of Information Science and Electrical Engineering Zhejiang University Hangzhou China National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2008, (04) : 500 - 509
  • [46] Rao-Blackwellised粒子滤波及在重力梯度导航中应用
    王宗原
    孙枫
    弹箭与制导学报, 2013, 33 (06) : 153 - 155+159
  • [47] Real-Time Tracking of Multiple Acoustical Sources Utilising Rao-Blackwellised Particle Filtering
    McCormack, Leo
    Politis, Archontis
    Sarkka, Simo
    Pulkki, Ville
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 206 - 210
  • [48] 多传感器量测自适应Rao-Blackwellised粒子滤波算法
    胡振涛
    刘先省
    金勇
    系统工程与电子技术, 2012, 34 (02) : 292 - 296+347
  • [49] 采用Rao-Blackwellised粒子滤波的时变多用户检测
    赵知劲
    胡波
    杨小牛
    信号处理, 2011, 27 (09) : 1365 - 1369
  • [50] A Posterior Probabilistic Criterion on the Fast Look-Ahead Unscented Rao-Blackwellised Particle Filter
    Yuvapoositanon, Peerapol
    2013 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2013,