On quasi-ergodic distribution for one-dimensional diffusions

被引:5
|
作者
He, Guoman [1 ]
Zhang, Hanjun [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
One-dimensional diffusions; Quasi-ergodicity; Intrinsic ultracontractivity; Mean-ratio quasi-stationary distribution; STATIONARY DISTRIBUTIONS; ULTRACONTRACTIVITY;
D O I
10.1016/j.spl.2015.12.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study quasi-ergodicity for one-dimensional diffusion X killed at 0, when 0 is an exit boundary and +infinity is an entrance boundary. Using the spectral theory tool, we show that if the killed semigroup is intrinsically ultracontractive, then there exists a unique quasi-ergodic distribution for X. An example is given to illustrate the result. Moreover, the ultracontractivity of the killed semigroup is also studied. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [21] One-dimensional diffusions and approximation
    Rasa, Ioan
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (02) : 153 - 169
  • [22] One-Dimensional Diffusions and Approximation
    Ioan Rasa
    [J]. Mediterranean Journal of Mathematics, 2005, 2 : 153 - 169
  • [23] LIMITS OF ONE-DIMENSIONAL DIFFUSIONS
    Lowther, George
    [J]. ANNALS OF PROBABILITY, 2009, 37 (01): : 78 - 106
  • [24] Concentration of quasi-stationary distributions for one-dimensional diffusions with applications
    Shen, Zhongwei
    Wang, Shirou
    Yi, Yingfei
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 874 - 903
  • [25] Existence and construction of quasi-stationary distributions for one-dimensional diffusions
    Zhang, Hanjun
    He, Guoman
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 171 - 181
  • [26] One-Dimensional Homogeneous Diffusions
    Jacobsen, Martin
    [J]. STOCHASTIC BIOMATHEMATICAL MODELS: WITH APPLICATIONS TO NEURONAL MODELING, 2013, 2058 : 37 - 55
  • [27] Evidence that a mechanic normal system is generally quasi-ergodic
    Fermi, E
    [J]. PHYSIKALISCHE ZEITSCHRIFT, 1923, 24 : 261 - 265
  • [28] OPTIMAL STOPPING OF ONE-DIMENSIONAL DIFFUSIONS
    SALMINEN, P
    [J]. MATHEMATISCHE NACHRICHTEN, 1985, 124 : 85 - 101
  • [29] On Occupation Times of One-Dimensional Diffusions
    Salminen, Paavo
    Stenlund, David
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (02) : 975 - 1011
  • [30] Classification of killed one-dimensional diffusions
    Martínez, S
    Martín, JS
    [J]. ANNALS OF PROBABILITY, 2004, 32 (1A): : 530 - 552