Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks

被引:10
|
作者
Sit, Hilarie [1 ]
Earls, Christopher J. [1 ,2 ]
机构
[1] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
关键词
evaporation duct; electromagnetic propagation; bistatic radar sampling; artificial neural network; machine learning; model selection; RADIO REFRACTIVITY; INVERSION PROBLEM; PROPAGATION; MODEL;
D O I
10.1029/2019RS006798
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply a multilayer perceptron machine learning (ML) regression approach to infer electromagnetic (EM) duct heights within the marine atmospheric boundary layer (MABL) using sparsely sampled EM propagation data obtained within a bistatic context. This paper explains the rationale behind the selection of the ML network architecture, along with other model hyperparameters, in an effort to demystify the process of arriving at a useful ML model. The resulting speed of our ML predictions of EM duct heights, using sparse data measurements within MABL, indicates the suitability of the proposed method for real-time applications.
引用
收藏
页码:1181 / 1191
页数:11
相关论文
共 50 条
  • [11] Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks Applied to Lidar Measurements
    Garcia-Gutierrez, Adrian
    Dominguez, Diego
    Lopez, Deibi
    Gonzalo, Jesus
    SENSORS, 2021, 21 (11)
  • [12] Artificial neural networks for solving elliptic differential equations with boundary layer
    Yuan, Dongfang
    Liu, Wenhui
    Ge, Yongbin
    Cui, Guimei
    Shi, Lin
    Cao, Fujun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 6583 - 6598
  • [13] Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer
    Zhang, Hanjiu
    Zhu, Liming
    Sun, Gang
    Zhang, Kun
    Xu, Manman
    Liu, Nana
    Chen, Duolong
    Wu, Yang
    Cui, Shengcheng
    Luo, Tao
    LI, Xuebin
    Weng, Ningquan
    APPLIED OPTICS, 2022, 61 (33) : 9762 - 9772
  • [14] Gaussian Process Regression for Estimating EM Ducting Within the Marine Atmospheric Boundary Layer
    Sit, Hilarie
    Earls, Christopher J.
    RADIO SCIENCE, 2020, 55 (06)
  • [15] Impact of swell on the marine atmospheric boundary layer
    Kudryavtsev, VN
    Makin, VK
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2004, 34 (04) : 934 - 949
  • [16] Study on Clouds and Marine Atmospheric Boundary Layer
    赵柏林
    甄进明
    胡成达
    杜金林
    朱元竞
    张呈祥
    AdvancesinAtmosphericSciences, 1992, (04) : 383 - 396
  • [17] Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks, Mesoscale Models, and LiDAR Measurements
    Garcia-Gutierrez, Adrian
    Lopez, Deibi
    Dominguez, Diego
    Gonzalo, Jesus
    SENSORS, 2023, 23 (07)
  • [18] Atmospheric Refractivity Evaluation Improved Using Artificial Neural Networks
    Mudroch, Martin
    Pechac, Pavel
    Grabner, Martin
    Kvicera, Vaclav
    PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2010,
  • [19] Characterizing temporal development of biofilm porosity using artificial neural networks
    Raajan, Raaja
    Veluchamy, Angathevar
    Beyenal, Haluk
    Lewandowski, Zbigniew
    WATER SCIENCE AND TECHNOLOGY, 2008, 57 (12) : 1867 - 1872
  • [20] MARINE MAMMAL CALL DISCRIMINATION USING ARTIFICIAL NEURAL NETWORKS
    POTTER, JR
    MELLINGER, DK
    CLARK, CW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 96 (03): : 1255 - 1262