Missing data in interactive high-dimensional data visualization

被引:0
|
作者
Swayne, DF
Buja, A
机构
[1] BELLCORE, Morristown, NJ 07960 USA
[2] AT&T Bell Labs, Murray Hill, NJ 07974 USA
关键词
missing values; imputation of missing values; data visualization; statistical graphics; interactive graphics; dynamic graphics; linked views; brushing; data rotations; grand tours;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe techniques for the interactive exploratory analysis of multivariate data with missing values. The approach is to 1) provide trivial imputations such as fixed values, 2) accept multiple imputations computed elsewhere, and 3) provide a means for keeping track of the location of missing values in the data. The techniques have two major uses: First, they support the exploration of missing values, their correlations across variables and their associations with the variables of interest. Second, the techniques support the investigation and comparison of precomputed imputation schemes; in particular, they can be used to informally diagnose the adequacy of imputations. The techniques are illustrated with an implementation in the XGobi software.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
  • [41] Visualization strategies to aid interpretation of high-dimensional genotoxicity data
    Dertinger, Stephen D.
    Briggs, Erica
    Hussien, Yusuf
    Bryce, Steven M.
    Avlasevich, Svetlana L.
    Conrad, Adam
    Johnson, George E.
    Williams, Andrew
    Bemis, Jeffrey C.
    [J]. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2024, 65 (05) : 156 - 178
  • [42] RBPCP: Visualization on Multi-set High-dimensional Data
    Xie, Weiqiang
    Wei, Yingmei
    Ma, Hao
    Du, Xiaolei
    [J]. 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 16 - 20
  • [43] Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization
    Bertini, Enrico
    Tatu, Andrada
    Keim, Daniel
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2203 - 2212
  • [44] SCALABLE VISUALIZATION FOR HIGH-DIMENSIONAL SINGLE-CELL DATA
    Kim, Juho
    Russell, Nate
    Peng, Jian
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 623 - 634
  • [45] A tractable method to account for high-dimensional nonignorable missing data in intensive longitudinal data
    Yuan, Chengbo
    Hedeker, Donald
    Mermelstein, Robin
    Xie, Hui
    [J]. STATISTICS IN MEDICINE, 2020, 39 (20) : 2589 - 2605
  • [46] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [47] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    [J]. JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [48] Interactive visualization of high dimensional marketing data in the financial industry
    Smeulders, R
    Heijs, A
    [J]. NINTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2005, : 814 - 817
  • [49] Pattern Alternating Maximization Algorithm for Missing Data in High-Dimensional Problems
    Stadler, Nicolas
    Stekhoven, Daniel J.
    Buehlmann, Peter
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 1903 - 1928
  • [50] High-dimensional conditionally Gaussian state space models with missing data
    Chan, Joshua C. C.
    Poon, Aubrey
    Zhu, Dan
    [J]. JOURNAL OF ECONOMETRICS, 2023, 236 (01)