Coyote optimization algorithm for the parameter extraction of photovoltaic cells

被引:93
|
作者
Chin, Vun Jack [1 ,2 ,3 ]
Salam, Zainal [2 ,3 ]
机构
[1] Univ Southampton Malaysia, Sch Elect & Comp Sci, Iskandar Puteri 79200, Malaysia
[2] Univ Teknol Malaysia, Sch Elect Engn, Ctr Elect Energy Syst, Johor Baharu 81310, Malaysia
[3] Univ Teknol Malaysia, Inst Future Energy, Johor Baharu 81310, Malaysia
关键词
Solar photovoltaic; Parameter extraction; Coyote optimization algorithm; Evolutionary algorithm; Equivalent circuit model; ARTIFICIAL BEE COLONY; I-V CHARACTERISTICS; SOLAR-CELLS; CRYSTALLINE SILICON; MODEL PARAMETERS; DIFFERENTIAL EVOLUTION; PV MODULE; IDENTIFICATION; DEGRADATION; DIODE;
D O I
10.1016/j.solener.2019.10.093
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a new and powerful metaheuristic optimization technique known as the Coyote Optimization Algorithm (COA) is proposed for the parameter extraction of the PV cell/module. It is utilized to identify the parameters of the single diode and two-diode models. Inspired by the social norms adopted by the coyotes to ensure the survivability of their species, the COA possesses several outstanding merits such as low number of control parameters, ease of implementation and diverse mechanisms for balancing exploration and exploitation. For physically meaningful solutions, a set of parametric constraints is introduced to prevent the coyotes from straying outside of the predefined boundaries of the search space. Extensive tests indicate that the proposed optimizer exhibits superior accuracy compared to other state-of-the-art EA-based parameter extraction methods. It achieved root-mean-square error (RSME) as low as 7.7301E-04 A and 7.3265E-04 A, for the single-diode and two-diode models, respectively. Moreover, the algorithm maintains outstanding performance when tested on an assortment of modules of different technologies (i.e. mono-crystalline, poly-crystalline, and thin film) at varying irradiance and temperature. The standard deviations (STDs) of the fitness values over 35 runs are measured to be less than 1 x 10(-5) for both models. This suggests that the results produced by the algorithm are highly consistent. With these outstanding merits, the COA is envisaged to be a competitive option for the parameter extraction problem of PV cell/module.
引用
收藏
页码:656 / 670
页数:15
相关论文
共 50 条
  • [41] Parameter Estimation of Electric Power Transformers Using Coyote Optimization Algorithm With Experimental Verification
    Abdelwanis, Mohamed I.
    Abaza, Amlak
    El-Sehiemy, Ragab A.
    Ibrahim, Mohamed N.
    Rezk, Hegazy
    [J]. IEEE ACCESS, 2020, 8 : 50036 - 50044
  • [42] Optimal Configuration Method of Photovoltaic Intelligent Edge Terminal Based on Improved Coyote Optimization Algorithm
    Liu, Jiaheng
    Zhang, Ming
    Ge, Leijiao
    Ji, Wenlu
    Wang, Bo
    Fang, Lei
    Zhang, Weiya
    [J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (07): : 1368 - 1379
  • [43] Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching-Learning-Based Optimization Algorithm
    Ramadan, Abdelhady
    Kamel, Salah
    Korashy, Ahmed
    Yu, Juan
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2020, 44 (02) : 767 - 779
  • [44] Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm
    Pourmousa, Nafiseh
    Ebrahimi, S. Mohammadreza
    Malekzadeh, Milad
    Alizadeh, Mojtaba
    [J]. SOLAR ENERGY, 2019, 180 : 180 - 191
  • [45] Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm
    Abdelhady Ramadan
    Salah Kamel
    Ahmed Korashy
    Juan Yu
    [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44 : 767 - 779
  • [46] Enhanced Seagull Optimization Algorithm for Photovoltaic Cell Parameter Estimating
    Wei, Hongyin
    Xu, Kailin
    Zhang, Jianming
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1979 - 1984
  • [47] PARAMETER IDENTIFICATION OF PHOTOVOLTAIC MODULES BASED ON LINEAR OPTIMIZATION ALGORITHM
    Zhu, Chen
    Zhou, Chuxiang
    Li, Jinze
    Xu, Jie
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (08): : 391 - 397
  • [48] Application of ASO Algorithm in Parameter Identification of Photovoltaic Cells
    Han, Xiaoming
    Wu, Yanjuan
    Wang, Yunliang
    Liu, Shuang
    Liu, Changcheng
    [J]. PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1866 - 1870
  • [49] Archimedes optimization algorithm based parameter extraction of photovoltaic models on a decent basis for novel accurate RMSE calculation
    Hussain, Md Tahmid
    Hussan, Md Reyaz
    Tariq, Mohd
    Sarwar, Adil
    Ahmad, Shafiq
    Poshtan, Majid
    Mahmoud, Haitham A.
    [J]. FRONTIERS IN ENERGY RESEARCH, 2024, 11
  • [50] Comparative analysis of the hybrid gazelle-Nelder-Mead algorithm for parameter extraction and optimization of solar photovoltaic systems
    Ekinci, Serdar
    Izci, Davut
    Hussien, Abdelazim G.
    [J]. IET RENEWABLE POWER GENERATION, 2024, 18 (06) : 959 - 978