Pointwise approximation by the modified Szasz-Mirakyan operators

被引:0
|
作者
Zeng, Xiao-Ming [1 ]
Chen, X. [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
关键词
rate of convergence; functions of bounded variation; class of functions; modified Szasz-Mirakyan operators; Lebesgue-Stieltjes integral;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we obtain an estimate on the rate of convergence of modified Szasz-Mirakyan operators for bounded functions satisfying certain growth condition. In the case of functions of bounded variation our result is better than the known results due to Sahai and Prasad (1993, Publ. Inst. Math. (Beograd) (N.S.) 53, 73-80) and Gupta and Pant (1999, J. Math. Anal. Appl. 233, 476-483). More important, by means of new metric form, our result successfully deals with the pointwise approximation of more general class of functions than the class of functions of bounded variation considered in the references as mentioned above.
引用
收藏
页码:421 / 429
页数:9
相关论文
共 50 条
  • [21] Direct results on certain Szasz-Mirakyan operators
    Gupta, Vijay
    Sinha, Jyoti
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) : 230 - 239
  • [22] On a Modification of (p, q)-Szasz-Mirakyan Operators
    Acar, Tuncer
    Agrawal, Purshottam Narain
    Kumar, A. Sathish
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (01) : 155 - 167
  • [23] ON THE SIMULTANEOUS APPROXIMATION OF FUNCTIONS AND THEIR DERIVATIVES BY THE SZASZ-MIRAKYAN OPERATOR
    SUN, XH
    JOURNAL OF APPROXIMATION THEORY, 1988, 55 (03) : 279 - 288
  • [24] A note on the convergence of partial Szasz-Mirakyan type operators
    Herzog, Monika
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2014, 13 (01) : 45 - 50
  • [25] Szasz-Mirakyan Type Operators Which Fix Exponentials
    Acar, Tuncer
    Aral, Ali
    Cardenas-Morales, Daniel
    Garrancho, Pedro
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1393 - 1404
  • [26] A note on improved estimations for integrated Szasz-Mirakyan operators
    Gupta, Vijay
    Deo, Naokant
    MATHEMATICA SLOVACA, 2011, 61 (05) : 799 - 806
  • [27] A best constant for bivariate Bernstein and Szasz-Mirakyan operators
    De La Cal, J
    Cárcamo, J
    Valle, AM
    JOURNAL OF APPROXIMATION THEORY, 2003, 123 (01) : 117 - 124
  • [28] On generalized Szasz-Mirakyan operators of functions of two variables
    Rempulska, Lucyna
    Graczyk, Szymon
    MATHEMATICA SLOVACA, 2012, 62 (01) : 87 - 98
  • [29] On (p, q)-generalization of Szasz-Mirakyan Kantorovich operators
    Sharma, Honey
    Gupta, Cheena
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 213 - 222
  • [30] A converse result for approximation by a weighted Szasz-Mirakyan operator
    Della Vecchia, B.
    Mastroianni, G.
    Szabados, J.
    ACTA MATHEMATICA HUNGARICA, 2008, 118 (04) : 319 - 336