The same distribution of limit cycles in five perturbed cubic Hamiltonian systems

被引:22
|
作者
Liu, ZR [1 ]
Yang, ZY [1 ]
Jiang, T [1 ]
机构
[1] Yunnan Univ, Dept Math, Inst Appl Math, Kunming 650091, Yunnan, Peoples R China
来源
关键词
limit cycles; bifurcation; cubic Hamiltonian system;
D O I
10.1142/S0218127403006522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the method of qualitative analysis we show that five perturbed cubic Hamiltonian systems have the same distribution of limit cycles and have 11 limit cycles for some parameters. The accurate location of each limit cycle is given by numerical exploration. In other words, we demonstrate the existence of 11 limit cycles and their distribution in five perturbed systems in two ways, the results obtained from both ways are the same.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 50 条
  • [41] ALGEBRAIC LIMIT CYCLES OF PLANAR CUBIC SYSTEMS
    Volokitin, E. P.
    Cheresiz, V. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 2045 - 2054
  • [42] Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations
    Zhang, TH
    Han, MA
    Zang, H
    Meng, XZ
    CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1127 - 1138
  • [43] Bifurcation of limit cycles by perturbing a class of hyper-elliptic Hamiltonian systems of degree five
    Xiong, Yanqin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 559 - 573
  • [44] LIMIT DISTRIBUTION FOR THE EXISTENCE OF HAMILTONIAN CYCLES IN A RANDOM GRAPH
    KOMLOS, J
    SZEMEREDI, E
    DISCRETE MATHEMATICS, 1983, 43 (01) : 55 - 63
  • [45] Numerical Investigation of Limit Cycles to A Non-Hamiltonian Perturbed Integrable System
    Hong, Xiaochun
    Hong, Lijun
    Wang, Bin
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 583 - 587
  • [46] LIMIT-CYCLES IN PERIODICALLY PERTURBED POPULATION SYSTEMS
    GOPALSAMY, K
    BULLETIN OF MATHEMATICAL BIOLOGY, 1981, 43 (04) : 463 - 485
  • [47] Bifurcations of limit cycles of perturbed completely integrable systems
    Tudoran, Razvan M.
    Girban, Anania
    NONLINEARITY, 2017, 30 (03) : 1058 - 1088
  • [48] The number of limit cycles in dynamical systems close to Hamiltonian systems
    Medvedev, VS
    Fedorov, EL
    DIFFERENTIAL EQUATIONS, 1996, 32 (08) : 1146 - 1148
  • [49] DISTRIBUTION OF LIMIT-CYCLES OF THE PLANAR CUBIC SYSTEM
    LI, JB
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (01): : 35 - 46
  • [50] BIFURCATION OF LIMIT CYCLES BY PERTURBING PIECEWISE HAMILTONIAN SYSTEMS
    Liu, Xia
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1379 - 1390