Time-space tradeoffs for nondeterministic computation

被引:24
|
作者
Fortnow, L [1 ]
van Melkebeek, D [1 ]
机构
[1] NEC Res Inst, Princeton, NJ 08540 USA
关键词
D O I
10.1109/CCC.2000.856730
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show new tradeoffs for satisfiability and nondeterministic linear time. Satisfiability cannot be solved on general purpose random-access Turing machines in rime n(1.618) and space n(o(1)). This improves recent results of Fortnow and of Lipton and Viglas. In general, for any constant a less than the golden ratio, we prove that satisfiability cannot be salved in time n(a) and space n(b) for some positive constant b. Our techniques allow us to establish this result for b < 1/2(a+2/a(2) - a). We can do better for a close to the golden ratio, for example, satisfiability cannot be solved by a random-access Turing machine using n(1.46) time and n(.11) space. We also shore tradeoffs for nondeterministic linear time computations using sublinear space. For example, there exists a language computable in nondeterministic linear rime and n(.619) space that cannot be computed in deterministic n(1.618) time and n(o(1)) space. Higher up the polynomial-time hierarchy we can get better bounds. We show that linear-time Sigma(l)-computations require essentially n(l) time on deterministic machines that use only n(o(1)) space. We also show new lower bounds on conondeterministic versus nondeterministic computation.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [41] Time-Space Tradeoffs and Short Collisions in Merkle-Damgard Hash Functions
    Akshima
    Cash, David
    Drucker, Andrew
    Wee, Hoeteck
    ADVANCES IN CRYPTOLOGY - CRYPTO 2020, PT I, 2020, 12170 : 157 - 186
  • [42] A TIME-SPACE TRADEOFF FOR SORTING ON A GENERAL SEQUENTIAL MODEL OF COMPUTATION
    BORODIN, A
    COOK, S
    SIAM JOURNAL ON COMPUTING, 1982, 11 (02) : 287 - 297
  • [43] On Time-Space Tradeoffs for Bounded-Length Collisions in Merkle-Damgard Hashing
    Ghoshal, Ashrujit
    Komargodski, Ilan
    ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT III, 2022, 13509 : 161 - 191
  • [44] Optimal Security for Keyed Hash Functions: Avoiding Time-Space Tradeoffs for Finding Collisions
    Freitag, Cody
    Ghoshal, Ashrujit
    Komargodski, Ilan
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2023, PT IV, 2023, 14007 : 440 - 469
  • [45] On Time-Space Tradeoffs for Bounded-Length Collisions in Merkle-Damgard Hashing
    Ghoshal, Ashrujit
    Komargodski, Ilan
    COMPUTATIONAL COMPLEXITY, 2023, 32 (02)
  • [46] RELATIVIZING TIME, SPACE, AND TIME-SPACE
    BOOK, RV
    WILSON, CB
    XU, MR
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 571 - 581
  • [47] Analysis and computation for quenching solution to the time-space fractional Kawarada problem
    Cao, Dingding
    Li, Changpin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (02) : 559 - 606
  • [48] A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs
    Andris Ambainis
    Robert Špalek
    Ronald de Wolf
    Algorithmica, 2009, 55 : 422 - 461
  • [49] Space-Time Tradeoffs for Longest-Common-Prefix Array Computation
    Puglisi, Simon J.
    Turpin, Andrew
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 124 - 135
  • [50] On Time-Space Tradeoffs for Bounded-Length Collisions in Merkle-Damgård Hashing
    Ashrujit Ghoshal
    Ilan Komargodski
    computational complexity, 2023, 32