Recovery from influenza virus infection has long been known to require an intact T-cell compartment. More recent studies revealed that CD8 and CD4 T cells can promote recovery through independent mechanisms. The CD4 T-cell-dependent recovery process appears to operate primarily through promotion of the T-dependent antibody response as B-cell deficient mu MT mice cannot recover from infection if they have been depleted of CD8 T cells. The potential therapeutic activity of the B-cell response was further studied by transfer of antibodies into infected SCID mice. At the dose of 200 mu g/mouse, most antibodies (of IgG2a isotype) to the viral transmembrane protein HA cured the infection, while those to the transmembrane proteins NA and M2 suppressed virus titers in the lung but failed to dear the infection. The ability of passive antibody to resolve the infection was closely related to its prophylactic activity, suggesting that neutralization of progeny virus (VN) played an important role in the process of virus clearance in vivo, while reaction of antibodies with infected host cells contributed to but was insufficient, on its own, for cure. HA-specific antibodies of IgM and IgA isotypes were therapeutically ineffective against pulmonary infection, presumably because of a preferential delivery into the upper respiratory tract, while IgG exhibited highest activity against pulmonary and minimal activity against nasal infection. B cells appear to be of similar importance for recovery from primary infection as CD8 T cells.