Evaluation of charge -sharing effects on the spatial resolution of the PICASSO detector

被引:4
|
作者
Rigon, L. [1 ]
Arfelli, F. [1 ,2 ]
Bergamaschi, A. [3 ]
Chen, R. C. [1 ,4 ]
Dreossi, D. [1 ,5 ]
Longo, R. [1 ,2 ]
Menk, R. -H. [5 ]
Schmitt, B. [3 ]
Vallazza, E. [1 ]
Castelli, E. [1 ,2 ]
机构
[1] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[2] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy
[3] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[5] Sincrotrone Trieste SCpA, I-34012 Basovizza, TS, Italy
关键词
Silicon microstrip; Photon counting; Digital mammography; Synchrotron radiation; Charge sharing; SYNCHROTRON-RADIATION; CLINICAL MAMMOGRAPHY;
D O I
10.1016/j.nima.2009.09.007
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A double -layer "edge-on" silicon microstrip detector has been designed and realized in the frame of the PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) project at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline of Elettra (Trieste, Italy). The detector meets the requirements for synchrotron radiation mammography with patients inregarding: (a) size, since it covers the full beam width (210 mm); (b) spatial resolution, determined by the 0.05 mm strip pitch; (c) single-photon counting capabilities, because it is able to handle more than 106 photons/(pixel x s); (d) contrast resolution, thanks to a threshold trim DAC that equalizes the channel sensitivity; (e) efficiency, due to the high absorption in the 15-20 mm sensor depth. Experimental measurements evidence charge sharing, though not compromising the spatial resolution. (C) 2009 Elsevier By. All rights reserved.
引用
收藏
页码:244 / 245
页数:2
相关论文
共 50 条
  • [1] Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth
    Haltmeier, Markus
    Zangerl, Gerhard
    INVERSE PROBLEMS, 2010, 26 (12)
  • [2] Quantitative evaluation of spatial resolution of photovoltaic electroluminescence defect detector
    He X.
    Yang A.-J.
    Li J.-S.
    Luo H.-Y.
    Chen C.-Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (03): : 542 - 547
  • [3] Evaluation of a thin microstrip detector for high spatial resolution dosimetry
    Kalliopuska, J.
    Cullen, A.
    Lerch, M.
    Petasecca, M.
    Santala, M.
    Rosenfeld, A.
    RADIATION MEASUREMENTS, 2011, 46 (12) : 1643 - 1645
  • [4] Charge quantization and detector resolution
    Riwar, Roman-Pascal
    SCIPOST PHYSICS, 2021, 10 (04):
  • [5] A STUDY OF THE CHARGE CLUSTER CHARACTERISTICS AND SPATIAL-RESOLUTION OF A SILICON MICROSTRIP DETECTOR
    CHANG, YH
    CHEN, AE
    HOU, SR
    LIN, WT
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 363 (03): : 538 - 544
  • [6] Semiconductor pixel detector with absorption grid as a tool for charge sharing studies and energy resolution improvement
    Krejci, F.
    Jakubek, J.
    Kroupa, M.
    Jurka, V.
    Hruska, K.
    JOURNAL OF INSTRUMENTATION, 2011, 6
  • [7] An Efficient Transition Detector Exploiting Charge Sharing
    Wang, Yu
    Singh, Adit D.
    2015 28TH INTERNATIONAL CONFERENCE ON VLSI DESIGN (VLSID), 2015, : 298 - 303
  • [8] Contrast resolution of a kinestatic charge detector
    Tenney, CR
    MEDICAL PHYSICS, 1998, 25 (05) : 796 - 796
  • [9] THE EFFECTS OF DETECTOR MATERIAL AND STRUCTURE ON PET SPATIAL-RESOLUTION AND EFFICIENCY
    THOMPSON, CJ
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1990, 37 (02) : 718 - 724
  • [10] Minimization of charge sharing effects in a counting type SOI pixel detector for synchrotron radiation
    Song, L.
    Arai, Y.
    Lu, Y.
    Nishimura, R.
    Hashimoto, R.
    Kishimoto, S.
    Zhou, Y.
    Miyoshi, T.
    Wu, Z.
    Ouyang, Q.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (01)