Strain engineering the topological type-II Dirac semimetal NiTe2

被引:33
|
作者
Ferreira, P. P. [1 ]
Manesco, A. L. R. [1 ,2 ]
Dorini, T. T. [3 ]
Correa, L. E. [1 ]
Weber, G. [1 ]
Machado, A. J. S. [1 ]
Eleno, L. T. F. [1 ]
机构
[1] Univ Sao Paulo, Mat Engn Dept, Computat Mat Sci Grp ComputEEL MatSci, Escola Engn Lorena, Lorena, Brazil
[2] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[3] Univ Lorraine, IJL, CNRS, Nancy, France
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
ULTRAHIGH MOBILITY; SURFACE-STATES; FERMI ARCS; MAGNETORESISTANCE; TRANSITION; INSULATOR; SUPERCONDUCTIVITY; CONE;
D O I
10.1103/PhysRevB.103.125134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, we investigate the electronic and elastic properties in equilibrium and under strain of the type-II Dirac semimetal NiTe2 using density functional theory. Our results demonstrate the tunability of Dirac nodes' energy and momentum with strain and that it is possible to bring them closer to the Fermi level, while other metallic bands are suppressed. We also derive a minimal 4-band effective model for the Dirac cones, which accounts for the aforementioned strain effects by means of lattice regularization, providing an inexpensive way for further theoretical investigations and easy comparison with experiments. On an equal footing, we propose the static control of the electronic structure by intercalating alkali species into the van derWaals gap, resulting in the same effects obtained by strain engineering and removing the requirement of in situ strain. Finally, evaluating the wave-function's symmetry evolution as the lattice is deformed, we discuss possible consequences, such as Liftshitz transitions and the coexistence of type-I and type-II Dirac cones, thus motivating future investigations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Evidence for topological type-II Weyl semimetal WTe2
    Peng Li
    Yan Wen
    Xin He
    Qiang Zhang
    Chuan Xia
    Zhi-Ming Yu
    Shengyuan A. Yang
    Zhiyong Zhu
    Husam N. Alshareef
    Xi-Xiang Zhang
    Nature Communications, 8
  • [32] 3D Dirac Plasmons in the Type-II Dirac Semimetal PtTe2
    Politano, Antonio
    Chiarello, Gennaro
    Ghosh, Barun
    Sadhukhan, Krishanu
    Kuo, Chia-Nung
    Lue, Chin Shan
    Pellegrini, Vittorio
    Agarwal, Amit
    PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [33] Galvanomagnetic properties of the putative type-II Dirac semimetal PtTe2
    Orest Pavlosiuk
    Dariusz Kaczorowski
    Scientific Reports, 8
  • [34] Galvanomagnetic properties of the putative type-II Dirac semimetal PtTe2
    Pavlosiuk, Orest
    Kaczorowski, Dariusz
    SCIENTIFIC REPORTS, 2018, 8
  • [35] Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide*
    Cui, Zhihai
    Qian, Yuting
    Zhang, Wei
    Weng, Hongming
    Fang, Zhong
    CHINESE PHYSICS LETTERS, 2020, 37 (08)
  • [36] Topological origin of the type-II Dirac fermions in PtSe2
    Li, Yiwei
    Xia, Yunyouyou
    Ekahana, Sandy Adhitia
    Kumar, Nitesh
    Jiang, Juan
    Yang, Lexian
    Chen, Cheng
    Liu, Chaoxing
    Yan, Binghai
    Felser, Claudia
    Li, Gang
    Liu, Zhongkai
    Chen, Yulin
    PHYSICAL REVIEW MATERIALS, 2017, 1 (07):
  • [37] Observation of negative longitudinal magnetoresistance in the type-II Dirac semimetal PtSe2
    Li, Zhaoguo
    Zeng, Yong
    Zhang, Jicheng
    Zhou, Minjie
    Wu, Weidong
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [38] Type-II Dirac semimetal stabilized by electron-phonon coupling
    Moller, Mirko M.
    Sawatzky, George A.
    Franz, Marcel
    Berciu, Mona
    NATURE COMMUNICATIONS, 2017, 8
  • [39] Type-II Dirac semimetal stabilized by electron-phonon coupling
    Mirko M. Möller
    George A. Sawatzky
    Marcel Franz
    Mona Berciu
    Nature Communications, 8
  • [40] Bulk Dirac cone and highly anisotropic electronic structure of NiTe2
    Nurmamat, Munisa
    Eremeev, Sergey, V
    Wang, Xiaoxiao
    Yoshikawa, Tomoki
    Kono, Takashi
    Kakoki, Masaaki
    Muro, Takayuki
    Jiang, Qi
    Sun, Zhipeng
    Ye, Mao
    Kimura, Akio
    PHYSICAL REVIEW B, 2021, 104 (15)