Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries

被引:35
|
作者
Cho, Moon Kyu [1 ]
You, Seung Jae [1 ]
Woo, Jung Gyu [1 ]
An, Jung-Chul [1 ]
Kang, Sujin [2 ]
Lee, Hyun-Wook [2 ]
Kim, Ji Hoon [3 ]
Yang, Cheol-Min [3 ]
Kim, Yong Jung [1 ]
机构
[1] Res Inst Ind Sci & Technol RIST, Res Ctr Secondary Battery Mat, Pohang Shi 37673, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[3] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, Wanju Gun 55324, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Silicon-based anode; Highly densified anode; CVD coating; Binder pitch; Li-ion battery; HIGH-CAPACITY; HIGH-POWER; LITHIUM; SILICON; GRAPHITE; PERFORMANCE; ELECTRODES; PARTICLES; STABILITY; OXIDE;
D O I
10.1016/j.compositesb.2021.108799
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Si-based Li-ion battery (LIB) anode materials often possess porous structures to accommodate the intrinsic volumetric expansion of Si upon cycling. However, the porous structure may cause poor initial coulombic efficiency (ICE), inadequate cycle life due to the continuous generation of a solid-electrolyte interface, and incompatibility with calendaring processes. To overcome these issues, we designed an optimized Si/C (P?Si/C) composite anode consisting of Si nanoparticles, graphite, and pitch, with a highly densified structure, suppressing Si expansion and enabling compatibility with the calendaring process. To further enhance the cycle life, the surface of the P?Si/C composite was modified by chemical vapor deposition using CH4 gas (C?Si/C). The P?Si/C anode exhibited a high ICE of 88.0% with a rapid surge up to 99.0% after only the 4th cycle. The C?Si/C anode presented an improved capacity retention of 49.5% after the 39th cycle, compared with 46.0% for the P?Si/C anode after the 31st cycle, while maintaining the same ICE. Moreover, anodes prepared with 8 wt% P?Si/ C or C?Si/C and 92 wt% graphite (m-P-Si/C and m-C-Si/C, respectively) showed higher capacity retentions compared with pure Si/C anodes. The m-C-Si/C anode exhibited a higher capacity retention of 80.1% after the 40th cycle, compared with 71.2% for the m-P-Si/C anode. The m-C-Si/C anode also displayed an extremely low expansion rate and the majority of the expansion was elastically recovered. This C?Si/C composite provided a controllable means to modify the performance of LIBs by simple mixing with graphite.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Si/graphene composite as high-performance anode materials for Li-ion batteries
    Zhang, Ying-jie
    Chu, Hua
    Zhao, Li-wen
    Yuan, Long-fei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (09) : 6657 - 6663
  • [42] Multi-component layer–protected Si-based composites with improved electrochemical performances as anode for Li-ion batteries
    Zhou Li
    Shuo Zhao
    Jin Wang
    Xiaochao Xian
    Ionics, 2024, 30 : 1319 - 1327
  • [43] An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries
    Reyter, David
    Rousselot, Steeve
    Mazouzi, Driss
    Gauthier, Magali
    Moreau, Philippe
    Lestriez, Bernard
    Guyomard, Dominique
    Roue, Lionel
    JOURNAL OF POWER SOURCES, 2013, 239 : 308 - 314
  • [44] Si/MgO composite anodes for Li-ion batteries
    CHEN Jingbo a
    RareMetals, 2011, 30 (02) : 166 - 169
  • [45] Si/MgO composite anodes for Li-ion batteries
    Chen Jingbo
    Zhao Hailei
    He Jianchao
    Wang Jing
    RARE METALS, 2011, 30 (02) : 166 - 169
  • [46] Si/MgO composite anodes for Li-ion batteries
    Jingbo Chen
    Hailei Zhao
    Jianchao He
    Jing Wang
    Rare Metals, 2011, 30 : 166 - 169
  • [47] Tin-based composite materials as anode materials for Li-ion batteries
    Ahn, JH
    Wang, GX
    Yao, J
    Liu, HK
    Dou, SX
    JOURNAL OF POWER SOURCES, 2003, 119 : 45 - 49
  • [48] In-situ acoustic emission study of Si-based electrodes for Li-ion batteries
    Tranchot, A.
    Etiernble, A.
    Thivel, P. -X.
    Idrissi, H.
    Roue, L.
    JOURNAL OF POWER SOURCES, 2015, 279 : 259 - 266
  • [49] Development of Si-Based Anodes for All-Solid-State Li-Ion Batteries
    Zhao, Xuyang
    Rong, Yunpeng
    Duan, Yi
    Wu, Yanlong
    He, Deyu
    Qi, Xiaopeng
    Wang, Jiantao
    COATINGS, 2024, 14 (05)
  • [50] Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes
    Chevrier, Vincent L.
    Liu, Li
    Dinh Ba Le
    Lund, Jesse
    Molla, Biniam
    Reimer, Karl
    Krause, Larry J.
    Jensen, Lowell D.
    Figgemeier, Egbert
    Eberman, Kevin W.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : A783 - A791