Multivariate outlier detection in Stata

被引:80
|
作者
Verardi, Vincenzo [1 ,2 ,3 ]
Dehon, Catherine [2 ,3 ]
机构
[1] Univ Namur, Ctr Res Econ Dev, Namur, Belgium
[2] Univ Libre Bruxelles, European Ctr Adv Res Econ & Stat, Brussels, Belgium
[3] Univ Libre Bruxelles, Ctr Knowledge Econ, Brussels, Belgium
来源
STATA JOURNAL | 2010年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
st0192; mcd; detection; multivariate outliers; robustness; minimum covariance determinant; COVARIANCE;
D O I
10.1177/1536867X1001000206
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Before implementing any multivariate statistical analysis based on empirical covariance matrices, it is important to check whether outliers are present because their existence could induce significant biases. In this article, we present the minimum covariance determinant estimator, which is commonly used in robust statistics to estimate location parameters and multivariate scales. These estimators can be used to robustify Mahalanobis distances and to identify outliers. Verardi and Croux (1999, Stata Journal 9: 439-453; 2010, Stata Journal 10: 313) programmed this estimator in Stata and made it available with the mcd command. The implemented algorithm is relatively fast and, as we show in the simulation example section, outperforms the methods already available in Stata, such as the Hadi method.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [41] Production Multivariate Outlier Detection Using Principal Components
    O'Neill, Peter M.
    [J]. 2008 IEEE INTERNATIONAL TEST CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2008, : 11 - 20
  • [42] Multivariate Conditional Outlier Detection and Its Clinical Application
    Hong, Charmgil
    Hauskrecht, Milos
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 4216 - 4217
  • [43] Robust Outlier Detection Method For Multivariate Spatial Data
    Shukla, Sweta
    Lalitha, S.
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (06): : 551 - 554
  • [44] Application of multivariate outlier detection to fluid velocity measurements
    Griffin, John
    Schultz, Todd
    Holman, Ryan
    Ukeiley, Lawrence S.
    Cattafesta, Louis N., III
    [J]. EXPERIMENTS IN FLUIDS, 2010, 49 (01) : 305 - 317
  • [45] Robust Outlier Detection Method For Multivariate Spatial Data
    Sweta Shukla
    S. Lalitha
    [J]. National Academy Science Letters, 2021, 44 : 551 - 554
  • [46] Multivariate Outlier Detection for Forest Fire Data Aggregation Accuracy
    Alkhatib, Ahmad A. A.
    Abed-Al, Qusai
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (02): : 1071 - 1087
  • [47] Outlier detection for multivariate time series: A functional data approach
    Lopez-Oriona, Angel
    Vilar, Jose A.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 233
  • [48] Comparison of Multivariate Outlier Detection Methods for Nearly Elliptical Distributions
    Wada, Kazumi
    Kawano, Mariko
    Tsubaki, Hiroe
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2020, 49 (02) : 1 - 17
  • [49] Multivariate outlier detection and robust covariance matrix estimation -: Response
    Peña, D
    Prieto, FJ
    [J]. TECHNOMETRICS, 2001, 43 (03) : 306 - 310
  • [50] A Comparison of Multivariate Outlier Detection Methods For Finding Hyperspectral Anomalies
    Smetek, Timothy E.
    Bauer, Kenneth W., Jr.
    [J]. MILITARY OPERATIONS RESEARCH, 2008, 13 (04) : 19 - +