Multivariate outlier detection in Stata

被引:80
|
作者
Verardi, Vincenzo [1 ,2 ,3 ]
Dehon, Catherine [2 ,3 ]
机构
[1] Univ Namur, Ctr Res Econ Dev, Namur, Belgium
[2] Univ Libre Bruxelles, European Ctr Adv Res Econ & Stat, Brussels, Belgium
[3] Univ Libre Bruxelles, Ctr Knowledge Econ, Brussels, Belgium
来源
STATA JOURNAL | 2010年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
st0192; mcd; detection; multivariate outliers; robustness; minimum covariance determinant; COVARIANCE;
D O I
10.1177/1536867X1001000206
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Before implementing any multivariate statistical analysis based on empirical covariance matrices, it is important to check whether outliers are present because their existence could induce significant biases. In this article, we present the minimum covariance determinant estimator, which is commonly used in robust statistics to estimate location parameters and multivariate scales. These estimators can be used to robustify Mahalanobis distances and to identify outliers. Verardi and Croux (1999, Stata Journal 9: 439-453; 2010, Stata Journal 10: 313) programmed this estimator in Stata and made it available with the mcd command. The implemented algorithm is relatively fast and, as we show in the simulation example section, outperforms the methods already available in Stata, such as the Hadi method.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [1] OUTLIER DETECTION IN MULTIVARIATE CALIBRATION
    WALCZAK, B
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 28 (02) : 259 - 272
  • [2] Multivariate functional outlier detection
    Hubert, Mia
    Rousseeuw, Peter J.
    Segaert, Pieter
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 177 - 202
  • [3] Discussion of “Multivariate functional outlier detection”
    Ana Arribas-Gil
    Juan Romo
    [J]. Statistical Methods & Applications, 2015, 24 : 263 - 267
  • [4] Comments on: Multivariate functional outlier detection
    Garcia-Escudero, L. A.
    Gordaliza, A.
    Mayo-Iscar, A.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 233 - 235
  • [5] Comments on: Multivariate functional outlier detection
    L. A. García-Escudero
    A. Gordaliza
    A. Mayo-Iscar
    [J]. Statistical Methods & Applications, 2015, 24 : 233 - 235
  • [6] Multivariate outlier detection in exploration geochemistry
    Filzmoser, P
    Garrett, RG
    Reimann, C
    [J]. COMPUTERS & GEOSCIENCES, 2005, 31 (05) : 579 - 587
  • [7] Outlier detection in multivariate hydrologic data
    Kirk, Adam J.
    McCuen, Richard H.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2008, 13 (07) : 641 - 646
  • [8] Outlier detection for multivariate categorical data
    Puig, Xavier
    Ginebra, Josep
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2018, 34 (07) : 1400 - 1412
  • [9] SIMULTANEOUS MULTIVARIATE OUTLIER AND TREND DETECTION
    Pazdernik, Karl
    Stanfill, Bryan
    Bramer, Lisa
    MacPhee, Kellie J.
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 93 - 99
  • [10] Error rates for multivariate outlier detection
    Cerioli, Andrea
    Farcomeni, Alessio
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 544 - 553