Factor analysis for extraction of structural components and prediction in time series

被引:0
|
作者
Schneider, Carsten [1 ]
Arminger, Gerhard [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich 9, D-42097 Wuppertal, Germany
来源
关键词
D O I
10.1007/978-3-540-70981-7_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, factor analysis is used for the dimensional reduction of complex time series. If the structure within data is too complex to use e.g. ARIMA-models, factor analysis can be used for simplification without relevant loss of explained variation. The result are data with simple structure that can be forecasted by a standard prediction model. To give an example for this approach we predict the electricity demand per quarter of an hour of industrial customers in Germany. The data have a rather complex structure with 96 observations per day and possibly different cyclical variations during the day regarding different weekdays.
引用
收藏
页码:273 / +
页数:2
相关论文
共 50 条
  • [32] Principal components analysis of nonstationary time series data
    Lansangan, Joseph Ryan G.
    Barrios, Erniel B.
    STATISTICS AND COMPUTING, 2009, 19 (02) : 173 - 187
  • [33] ANALYSIS OF FREQUENCY COMPONENTS IN TIME-SERIES DATA
    FROSTIG, Z
    FROSTIG, RD
    JOURNAL OF NEUROSCIENCE METHODS, 1987, 22 (01) : 79 - 87
  • [34] Principal components analysis of nonstationary time series data
    Joseph Ryan G. Lansangan
    Erniel B. Barrios
    Statistics and Computing, 2009, 19
  • [35] Forecasting supply chain components with time series analysis
    Martin, LJ
    Frei, J
    53RD ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2003 PROCEEDINGS, 2003, : 269 - 278
  • [36] BURROUGHS 205 PROGRAM FOR TIME SERIES COMPONENTS ANALYSIS
    SCHROLLE.ND
    BEHAVIORAL SCIENCE, 1962, 7 (04): : 500 - &
  • [37] Analysis of principal functional components in economic time series
    Chavez Chong, Cristina O.
    Sanchez Garcia, Jesus E.
    DelaCerda Gastelum, Jose
    GECONTEC-REVISTA INTERNACIONAL DE GESTION DEL CONOCIMIENTO Y LA TECNOLOGIA, 2015, 3 (02): : 13 - 25
  • [38] PROCESS COMPONENTS FOR MULTIVARIATE TIME-SERIES ANALYSIS
    CROOKES, JG
    CROSTON, K
    SYPSAS, P
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1980, 31 (04) : 325 - 330
  • [39] Novel hidden feature extraction method for chaotic time series prediction
    Lei, Miao
    Peng, Yu
    Peng, Xiyuan
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2014, 35 (01): : 1 - 7
  • [40] CGTS: A Transformer framework for time series prediction based on feature extraction
    Ma, Yunpeng
    Yu, Qing
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 91 - 96