Enriched Galerkin finite element approximation for elastic wave propagation in fractured media

被引:17
|
作者
Vamaraju, Janaki [1 ]
Sen, Mrinal K. [1 ]
De Basabe, Jonas [2 ]
Wheeler, Mary [3 ]
机构
[1] Univ Texas Austin, John A & Katherine G Jackson Sch Geosci, Inst Geophys, Austin, TX 78712 USA
[2] Ctr Invest Cient & Educ Super Ensenada, Earth Sci Div, Seismol Dept, Ensenada, Baja California, Mexico
[3] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Subsurface Modeling, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Finite element method; Elastic wave propagation; Enriched Galerkin method; A-priori error estimates; Fractured media; Linear slip model; UNSTRUCTURED MESHES; INTERIOR PENALTY; GROUND MOTION; STABILITY; SIMULATIONS;
D O I
10.1016/j.jcp.2018.06.049
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Finite Element Methods (FEM) are becoming increasingly popular in modeling seismic wave propagation. These methods provide higher order accuracy, geometrical flexibility and adaptive gridding capabilities that are not easy to incorporate in traditional finite difference methods employed for generation of synthetic seismograms. Moreover, several studies have shown that Discontinuous Galerkin FEM (DGM) is a promising approach for modeling wave propagation in fractured media. Here we propose an Enriched Galerkin FEM (EGM) for elastic wave propagation. EGM uses the same bilinear form as DGM and the continuous Galerkin finite element spaces enriched by discontinuous piecewise constants or bilinear functions. EGM satisfies local equilibrium while reducing the degrees of freedom in DGM formulations. In this paper, we consider elastic wave propagation and derive optimal a priori error estimates for DGM and EGM. We present numerical examples in two spatial dimensions that confirm these theoretical results. In addition, we provide numerical comparisons with the Spectral element method. In previous work, DGM has been shown to be effective in modeling elastic wave propagation in fractured media using the linear slip model. We now extend these results to EGM with reduced computational costs over DGM. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:726 / 747
页数:22
相关论文
共 50 条
  • [1] An enriched finite element model for wave propagation in fractured media
    Komijani, M.
    Gracie, R.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 125 : 14 - 23
  • [2] A hybrid Galerkin finite element method for seismic wave propagation in fractured media
    Vamaraju, Janaki
    Sen, Mrinal K.
    De Basabe, Jonas
    Wheeler, Mary
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 857 - 878
  • [3] A generalized multiscale finite element method for elastic wave propagation in fractured media
    Chung E.T.
    Efendiev Y.
    Gibson R.L., Jr.
    Vasilyeva M.
    [J]. GEM - International Journal on Geomathematics, 2016, 7 (2) : 163 - 182
  • [4] Elastic wave propagation in fractured media using the discontinuous Galerkin method
    De Basabe, Jonas D.
    Sen, Mrinal K.
    Wheeler, Mary F.
    [J]. GEOPHYSICS, 2016, 81 (04) : T163 - T174
  • [5] A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation
    Matar, Olivier Bou
    Guerder, Pierre-Yves
    Li, YiFeng
    Vandewoestyne, Bart
    Van den Abeele, Koen
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (05): : 3650 - 3663
  • [6] Generalized multiscale finite elements for simulation of elastic-wave propagation in fractured media
    Cho, Yongchae
    Gibson, Richard L., Jr.
    Vasilyeva, Maria
    Efendiev, Yalchin
    [J]. GEOPHYSICS, 2018, 83 (01) : WA9 - WA20
  • [7] A finite element method enriched for wave propagation problems
    Ham, Seounghyun
    Bathe, Klaus-Juergen
    [J]. COMPUTERS & STRUCTURES, 2012, 94-95 : 1 - 12
  • [8] A wave packet enriched finite element for electroelastic wave propagation problems
    Kapuria, Santosh
    Kumar, Amit
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 170
  • [9] An immersed discontinuous Galerkin method for wave propagation in acoustic elastic media
    Adjerid, Slimane
    Lin, Tao
    Meghaichi, Haroun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [10] Discontinuous Galerkin method for wave propagation in elastic media with inhomogeneous inclusions
    Voroshchuk, Denis N.
    Miryaha, Vladislav A.
    Petrov, Igor B.
    Sannikov, Alexander V.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2016, 31 (01) : 41 - 50