An enriched finite element model for wave propagation in fractured media

被引:21
|
作者
Komijani, M. [1 ]
Gracie, R. [1 ]
机构
[1] Univ Waterloo, Dept Civil & Environm Engn, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized finite element; Wave propagation; Phantom Node Method; Mass lumping; CRACK;
D O I
10.1016/j.finel.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a new numerical method has been developed in the context of enriched finite element methods (FEMs) to analyze wave propagation in fractured media. The method combines the advantages of global enrichment with harmonic functions via the Generalized FEM (GFEM) with the efficacy of the Phantom Node Method (PNM), an eXtended FEM (XFEM) variant, to model cracks independently of the mesh. The GFEM enrichment suppresses the spurious oscillation that appear in regular FEM analysis of transient wave propagations due to numerical dispersion and Gibb's phenomenon. For use in explicit simulations, a mass lumping methodology has been introduced with a critical time step size that is both similar to that of the underlining FEM and independent of the location of the fracture. Through three examples, the developed PNMGFEM is demonstrated to more accurately model wave propagation in fractured media than either the FEM or the PNM/XFEM.
引用
收藏
页码:14 / 23
页数:10
相关论文
共 50 条
  • [1] Enriched Galerkin finite element approximation for elastic wave propagation in fractured media
    Vamaraju, Janaki
    Sen, Mrinal K.
    De Basabe, Jonas
    Wheeler, Mary
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 726 - 747
  • [2] A hybrid Galerkin finite element method for seismic wave propagation in fractured media
    Vamaraju, Janaki
    Sen, Mrinal K.
    De Basabe, Jonas
    Wheeler, Mary
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 857 - 878
  • [3] A generalized multiscale finite element method for elastic wave propagation in fractured media
    Chung E.T.
    Efendiev Y.
    Gibson R.L., Jr.
    Vasilyeva M.
    [J]. GEM - International Journal on Geomathematics, 2016, 7 (2) : 163 - 182
  • [4] A finite element method enriched for wave propagation problems
    Ham, Seounghyun
    Bathe, Klaus-Juergen
    [J]. COMPUTERS & STRUCTURES, 2012, 94-95 : 1 - 12
  • [5] A wave packet enriched finite element for electroelastic wave propagation problems
    Kapuria, Santosh
    Kumar, Amit
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 170
  • [6] A cut finite element method for a model of pressure in fractured media
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    [J]. NUMERISCHE MATHEMATIK, 2020, 146 (04) : 783 - 818
  • [7] A cut finite element method for a model of pressure in fractured media
    Erik Burman
    Peter Hansbo
    Mats G. Larson
    [J]. Numerische Mathematik, 2020, 146 : 783 - 818
  • [8] Wave propagation in fractured porous media
    Tuncay, K
    Corapcioglu, MY
    [J]. TRANSPORT IN POROUS MEDIA, 1996, 23 (03) : 237 - 258
  • [9] Seismic Wave Propagation in Fractured Media
    Woskoboynikova, G. M.
    [J]. IFOST 2008: PROCEEDING OF THE THIRD INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGIES, 2008, : 307 - 309
  • [10] Enriched mixed finite element models for dynamic analysis of continuous and fractured porous media
    Komijani, M.
    Gracie, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 343 : 74 - 99