Markov jump processes with a singularity

被引:6
|
作者
Barndorff-Nielsen, OE [1 ]
Benth, FE
Jensen, JL
机构
[1] Aarhus Univ, Dept Theoret Stat, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus, Denmark
[3] Aarhus Univ, Dept MaPhySto, DK-8000 Aarhus C, Denmark
关键词
confluent hypergeometric function; laser cooling; renewal theory;
D O I
10.1017/S0001867800010259
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Certain types of Markov jump processes x(t) with continuous state space and one or more absorbing states are studied. Cases where the transition rate in state x is of the form lambda>(*) over bar * (x) = \x\(delta) in a neighbourhood of the origin in R-d are considered, in particular. This type of problem arises from quantum physics in the study of laser cooling of atoms, and the present paper connects to recent work in the physics literature. The main question addressed is that of the asymptotic behaviour of x(t) near the origin for large t. The study involves solution of a renewal equation problem in continuous state space.
引用
下载
收藏
页码:779 / 799
页数:21
相关论文
共 50 条
  • [1] A PURE JUMP MARKOV PROCESS WITH A RANDOM SINGULARITY SPECTRUM
    Barral, Julien
    Fournier, Nicolas
    Jaffard, Stephane
    Seuret, Stephane
    ANNALS OF PROBABILITY, 2010, 38 (05): : 1924 - 1946
  • [2] ON SINGULARITY OF GREEN FUNCTIONS IN MARKOV PROCESSES
    KANDA, M
    NAGOYA MATHEMATICAL JOURNAL, 1968, 33 (NOV) : 21 - &
  • [3] PIECEWISE-DETERMINISTIC MARKOV PROCESSES AS LIMITS OF MARKOV JUMP PROCESSES
    Franz, Uwe
    Liebscher, Volkmar
    Zeiser, Stefan
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (03) : 729 - 748
  • [4] The Gibbs principle for Markov jump processes
    Aboulalaa, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 64 (02) : 257 - 271
  • [5] On Markov-Additive Jump Processes
    Lothar Breuer
    Queueing Systems, 2002, 40 : 75 - 91
  • [6] CHARACTERIZATION OF MINIMAL MARKOV JUMP PROCESSES
    JACOBSEN, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 23 (01): : 32 - &
  • [7] On Markov-additive jump processes
    Breuer, L
    QUEUEING SYSTEMS, 2002, 40 (01) : 75 - 91
  • [8] Generator estimation of Markov jump processes
    Metzner, P.
    Dittmer, E.
    Jahnke, T.
    Schuette, Ch.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 353 - 375
  • [9] The Gibbs principle for Markov jump processes
    Aboulalaa, A.
    Stochastic Processes and their Applications, 64 (02):
  • [10] LIMIT THEOREMS FOR MARKOV JUMP PROCESSES
    STOYANOV, IM
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1972, 25 (09): : 1171 - 1174