A PURE JUMP MARKOV PROCESS WITH A RANDOM SINGULARITY SPECTRUM

被引:17
|
作者
Barral, Julien [1 ]
Fournier, Nicolas [2 ]
Jaffard, Stephane [2 ]
Seuret, Stephane [2 ]
机构
[1] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
[2] Univ Paris Est Creteil Val de Marne, UFR Sci & Technol, CNRS, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 05期
关键词
Singularity spectrum; Hausdorff dimension; Markov processes; jump processes; stochastic differential equations; Poisson measures; MULTIFRACTAL NATURE; HAUSDORFF DIMENSION; WAVELET SERIES; LEVY PROCESSES;
D O I
10.1214/10-AOP533
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct a nondecreasing pure jump Markov process, whose jump measure heavily depends on the values taken by the process. We determine the singularity spectrum of this process, which turns out to be random and to depend locally on the values taken by the process. The result relies on fine properties of the distribution of Poisson point processes and on ubiquity theorems.
引用
收藏
页码:1924 / 1946
页数:23
相关论文
共 50 条
  • [1] Markov jump processes with a singularity
    Barndorff-Nielsen, OE
    Benth, FE
    Jensen, JL
    [J]. ADVANCES IN APPLIED PROBABILITY, 2000, 32 (03) : 779 - 799
  • [2] A pure jump Markov process associated with Smoluchowski's coagulation equation
    Deaconu, M
    Fournier, N
    Tanré, E
    [J]. ANNALS OF PROBABILITY, 2002, 30 (04): : 1763 - 1796
  • [3] Markov Chain Approximation of Pure Jump Processes
    Ante Mimica
    Nikola Sandrić
    René L. Schilling
    [J]. Acta Applicandae Mathematicae, 2018, 158 : 167 - 206
  • [4] The disorder problem for pure jump Markov processes
    Salov, GI
    [J]. Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Signal and Image Processing, 2005, : 205 - 209
  • [5] Markov Chain Approximation of Pure Jump Processes
    Mimica, Ante
    Sandric, Nikola
    Schilling, Rene L.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2018, 158 (01) : 167 - 206
  • [6] Law of large numbers and central limit theorem for a class of pure jump Markov process
    Chebbi, Mohsen
    Toumi, Salwa
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [7] OPTIMAL REPLACEMENT POLICIES OF DEVICES SUBJECT TO A PURE JUMP MARKOV WEAR PROCESS WITH REPAIR
    ABDELHAMEED, M
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (02) : 230 - 231
  • [8] On the gamma process modulated by a Markov jump process
    Paroissin, Christian
    Rabehasaina, Landy
    [J]. ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 2286 - 2290
  • [9] Stochastic jump-diffusion process for computing medial axes in Markov random fields
    Zhu, SC
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (11) : 1158 - 1169
  • [10] Modified Log-Sobolev Inequality for a Compact Pure Jump Markov Process with Degenerate Jumps
    Ioannis Papageorgiou
    [J]. Journal of Statistical Physics, 2020, 178 : 1293 - 1318