Sorption capacity and stability of mesoporous magnesium oxide in post-combustion CO2 capture

被引:39
|
作者
Ho, Keon [1 ]
Jin, Seongmin [1 ]
Zhong, Mianjun [1 ]
Anh-Tuan Vu [1 ,2 ]
Lee, Chang-Ha [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
[2] Hanoi Univ Sci & Technol, Sch Chem Engn, Hanoi, Vietnam
关键词
Magnesium oxide; Post-combustion CO2 capture; Calcination; Aerogel method; ADSORPTION-KINETICS; ACTIVATED CARBON; ZEOLITE LIX; MGO SORBENT; TEMPERATURE; REMOVAL; MGO/AL2O3; SILICAS; SURFACE; SULFUR;
D O I
10.1016/j.matchemphys.2017.06.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mesoporous magnesium oxides with a high surface area (672-686 m(2)/g) were synthesized by an aerogel method and subsequently evaluated for CO2 capture efficiency under ambient-temperature sorption and intermediate-temperature regeneration. The effects of one-step (MgO-1) and four-step (MgO-4) calcination methods on the as-prepared MgO samples were evaluated with respect to textual properties and CO2 sorption capacity at various temperatures (30-350 degrees C). The as-prepared MgOs showed greater than 10 wt% of CO2 sorption at 30 degrees C, showing very fast sorption of more than 7 wt% CO2 within 5 min. The cyclic stability of the sorbents was tested by using CO2 sorption at 30 degrees C and N-2 regeneration at 450 degrees C. The sorption performance of MgO-1 was more stable and higher than that of MgO-4, but the surface area and pore volume were still reduced. The cyclic sorption capacity became 6.1 wt% at the condition of mixture gas sorption (CO2/N-2: 15/85 vol%) and CO2 regeneration. Since inter-crystallites coupling plays an important role in pore formation as well as stability, calcination condition can contribute to preventing the degradation level of performance and textural properties of sorbents. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 161
页数:8
相关论文
共 50 条
  • [21] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    [J]. CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [22] New solvent blends for post-combustion CO2 capture
    Knuutila, Hanna K.
    Rennemo, Rune
    Ciftja, Arlinda F.
    [J]. GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 439 - 452
  • [23] Integration of post-combustion CO2 capture with aluminium production
    Mathisen, Anette
    Ariyarathna, Sanoja
    Eldrup, Nils
    Muller, Gunn-Iren
    Melaaen, Morten
    [J]. 12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6602 - 6610
  • [24] Corrosion in CO2 Post-Combustion Capture with Alkanolamines - A Review
    Kittel, J.
    Gonzalez, S.
    [J]. OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (05): : 915 - 929
  • [25] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785
  • [26] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    [J]. 21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772
  • [27] Dynamic Operation and Simulation of Post-Combustion CO2 Capture
    Gaspar, Jozsef
    Gladis, Arne
    Jorgensen, John Bagterp
    Thomsen, Kaj
    von Solms, Nicolas
    Fosbol, Philip Loldrup
    [J]. 8TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2016, 86 : 205 - 214
  • [28] Numerical Evaluation of CO2 Capture on Post-combustion Processes
    Chavez, Rosa-Hilda
    Guadarrama, Javier J.
    [J]. PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 271 - 276
  • [29] Development of adsorbent technologies for post-combustion CO2 capture
    Drage, T. C.
    Smith, K. M.
    Pevida, C.
    Arenillas, A.
    Snape, C. E.
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 881 - 884
  • [30] Ionic liquids as an alternative to CO2 post-combustion capture
    Gimeno, M. P.
    Mayoral, M. C.
    Andres, J. M.
    [J]. BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2013, (30): : 2 - 5