Extended Bose-Hubbard models with ultracold magnetic atoms

被引:265
|
作者
Baier, S. [1 ]
Mark, M. J. [1 ,2 ]
Petter, D. [1 ]
Aikawa, K. [1 ,4 ]
Chomaz, L. [1 ,2 ]
Cai, Z. [2 ]
Baranov, M. [2 ]
Zoller, P. [2 ,3 ]
Ferlaino, F. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[3] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21A, A-6020 Innsbruck, Austria
[4] Tokyo Inst Technol, Dept Phys, Grad Sch Sci & Engn, Meguro Ku, Tokyo 1528550, Japan
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
MOTT-INSULATOR; QUANTUM; TRANSITION; SUPERFLUID; GAS;
D O I
10.1126/science.aac9812
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hubbard model underlies our understanding of strongly correlated materials. Whereas its standard form only comprises interactions between particles at the same lattice site, extending it to encompass long-range interactions is predicted to profoundly alter the quantum behavior of the system. We realize the extended Bose-Hubbard model for an ultracold gas of strongly magnetic erbium atoms in a three-dimensional optical lattice. Controlling the orientation of the atomic dipoles, we reveal the anisotropic character of the onsite interaction and hopping dynamics and their influence on the superfluid-to-Mott insulator quantum phase transition. Moreover, we observe nearest-neighbor interactions, a genuine consequence of the long-range nature of dipolar interactions. Our results lay the groundwork for future studies of exotic many-body quantum phases.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 50 条
  • [31] Quantum phases of the extended Bose-Hubbard Hamiltonian: Possibility of a supersolid state of cold atoms in optical lattices
    Scarola, VW
    Das Sarma, S
    PHYSICAL REVIEW LETTERS, 2005, 95 (03)
  • [32] Thermal fluctuations of the extended Bose-Hubbard model at finite temperature
    Zhang, Yuanyu
    Qin, Jihong
    Xu, Junjun
    ANNALS OF PHYSICS, 2023, 455
  • [33] Momentum distribution of the insulating phases of the extended Bose-Hubbard model
    Iskin, M.
    Freericks, J. K.
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [34] Density-dependent tunneling in the extended Bose-Hubbard model
    Maik, Michal
    Hauke, Philipp
    Dutta, Omjyoti
    Lewenstein, Maciej
    Zakrzewski, Jakub
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [35] Quantum phase transitions in the dimerized extended Bose-Hubbard model
    Sugimoto, Koudai
    Ejima, Satoshi
    Lange, Florian
    Fehske, Holger
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [36] Topological Quantum Critical Points in the Extended Bose-Hubbard Model
    Fraxanet, Joana
    Gonzalez-Cuadra, Daniel
    Pfau, Tilman
    Lewenstein, Maciej
    Langen, Tim
    Barbiero, Luca
    PHYSICAL REVIEW LETTERS, 2022, 128 (04)
  • [37] Competing insulating phases in a dimerized extended Bose-Hubbard model
    Hayashi, Aoi
    Mondal, Suman
    Mishra, Tapan
    Das, B. P.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [38] Critical behavior of the supersolid transition in Bose-Hubbard models
    Frey, E
    Balents, L
    PHYSICAL REVIEW B, 1997, 55 (02) : 1050 - 1067
  • [39] Variational cluster perturbation theory for Bose-Hubbard models
    Koller, W.
    Dupuis, N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (41) : 9525 - 9540
  • [40] Characterization of Bose-Hubbard models with quantum nondemolition measurements
    Rogers, B.
    Paternostro, M.
    Sherson, J. F.
    De Chiara, G.
    PHYSICAL REVIEW A, 2014, 90 (04):