New Strategies for Initialization and Training of Radial Basis Function Neural Networks

被引:4
|
作者
Franco, D. G. B. [1 ]
Steiner, M. T. A. [1 ]
机构
[1] Pontificia Univ Catolica Paran PUC PR, Curitiba, Parana, Brazil
关键词
Radial Basis Function Neural Network; Financial Market; Time Series Forecasting; TIME-SERIES PREDICTION; DIFFERENTIAL EVOLUTION; ALGORITHM; OPTIMIZATION;
D O I
10.1109/TLA.2017.7932707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we proposed two new strategies for initialization and training of Radial Basis Function (RBF) Neural Network. The first approach takes into consideration the "error" between the input vector p of the network and the x-axis, which are the centers of radial functions. The second approach takes into account the "error" between the input vector p and the network output. In order to check the performances of these strategies, we used Brazilian financial market data for the RBF networks training, specifically the adjusted prices of the 10 greater weighted shares in the Bovespa index at the time of data collection - from April 8th, 2009 to October 31th, 2014. The first approach presented a 52% of improvement in the mean squared error (MSE) compared to the standard RBF network, while the improvement for the second approach was 38%. The strategies proved to be consistent for the time series tested, in addition to having a low computational cost. It is proposed that these strategies be improved by testing them with the Levenberg-Marquardt algorithm.
引用
收藏
页码:1182 / 1188
页数:7
相关论文
共 50 条
  • [41] Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification
    Karayiannis, Nicolaos B.
    Xiong, Yaohua
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (05): : 1222 - 1234
  • [42] Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
    Neruda, Roman
    Vidnerova, Petra
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2009, 2 (01): : 49 - 57
  • [43] Comparison between Traditional Neural Networks and Radial Basis Function Networks
    Xie, Tiantian
    Yu, Hao
    Wilamowski, Bogdan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [44] Learning errors by radial basis function neural networks and regularization networks
    Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžíí 2, Prague 8, Czech Republic
    Int. J. Grid Distrib. Comput., 2009, 1 (49-58):
  • [45] Nonlinear function approximation using radial basis function neural networks
    Husain, H
    Khalid, M
    Yusof, R
    2002 STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, PROCEEDINGS: GLOBALIZING RESEARCH AND DEVELOPMENT IN ELECTRICAL AND ELECTRONICS ENGINEERING, 2002, : 326 - 329
  • [46] Integrated method for constructive training of radial basis function networks
    Oliveira, ALI
    Melo, BJM
    Meira, SRL
    ELECTRONICS LETTERS, 2005, 41 (07) : 429 - 430
  • [47] Efficient VLSI Architecture for Training Radial Basis Function Networks
    Fan, Zhe-Cheng
    Hwang, Wen-Jyi
    SENSORS, 2013, 13 (03) : 3848 - 3877
  • [48] HIGHLY ROBUST TRAINING OF REGULARIZED RADIAL BASIS FUNCTION NETWORKS
    Kalina, Jan
    Vidnerova, Petra
    Janacek, Patrik
    KYBERNETIKA, 2024, 60 (01) : 38 - 59
  • [49] A metaheuristic algorithm based on a radial basis function neural networks
    Rivera-Aguilar, Beatriz A.
    Cuevas, Erik
    Zaldívar, Daniel
    Pérez-Cisneros, Marco A.
    Neural Computing and Applications, 2024, 36 (35) : 22119 - 22147
  • [50] AN ACTIVE LEARNING APPROACH FOR RADIAL BASIS FUNCTION NEURAL NETWORKS
    Abdullah, S. S.
    Allwright, J. C.
    JURNAL TEKNOLOGI, 2006, 45