An adaptive gradient law with projection for non-smooth convex boundaries

被引:3
|
作者
Kuhnen, K.
Krejci, P.
机构
[1] Univ Saarland, LPA, D-66123 Saarbrucken, Germany
[2] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague, Czech Republic
[3] WIAS, D-10117 Berlin, Germany
关键词
adaptive gradient law; non-smooth convex constraints; adaptive hysteresis compensation; projected dynamical system;
D O I
10.3166/ejc.12.606-619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The parameter projection method, which has been designed for solving on-line parameter identification problems under smooth convex restrictions is extended here to arbitrary convex parameter domains. Such problems arise naturally in cases where an admissible solution set results from the intersection of several (possibly smooth) convex constraints. The corresponding adaptive gradient law has the form of a special evolution projected dynamical system with a discontinuous right-hand side. The paper develops an alternative formulation of this projected dynamical system based on the multidimensional stop operator. The advantage of this approach is that the new right-hand side is continuous and the problem is thus accessible to conventional analysis methods, which easily give results on exixtence, uniqueness, and convergence properties of the corresponding solution trajectories. The method is tested on the parameter identification problem for complex hysteresis nonlinearities.
引用
收藏
页码:606 / 619
页数:14
相关论文
共 50 条
  • [41] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Bredies, Kristian
    Lorenz, Dirk A.
    Reiterer, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (01) : 78 - 112
  • [42] KKT OPTIMALITY CONDITIONS IN NON-SMOOTH, NON-CONVEX OPTIMIZATION
    Sisarat, Nithirat
    Wangkeeree, Rabian
    Lee, Gue Myung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (08) : 1319 - 1329
  • [43] A splitting bundle approach for non-smooth non-convex minimization
    Fuduli, A.
    Gaudioso, M.
    Nurminski, E. A.
    OPTIMIZATION, 2015, 64 (05) : 1131 - 1151
  • [44] Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding
    Kristian Bredies
    Dirk A. Lorenz
    Stefan Reiterer
    Journal of Optimization Theory and Applications, 2015, 165 : 78 - 112
  • [45] Gradient estimates for elliptic systems in non-smooth domains
    Byun, Sun-Sig
    Wang, Lihe
    MATHEMATISCHE ANNALEN, 2008, 341 (03) : 629 - 650
  • [46] A non-convex and non-smooth weighted image denoising model
    Fan, Huayu
    Feng, Qiqi
    Chen, Rui
    Cao, Xiangyang
    Pang, Zhi-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 187 : 85 - 105
  • [47] Tight analyses for non-smooth stochastic gradient descent
    Harvey, Nicholas J. A.
    Liaw, Christopher
    Plan, Yaniv
    Randhawa, Sikander
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [48] Nonlocal gradient mechanics of nanobeams for non-smooth fields
    Barretta, Raffaele
    Caporale, Andrea
    Luciano, Raimondo
    Vaccaro, Marzia Sara
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2023, 189
  • [49] Gradient estimates for elliptic systems in non-smooth domains
    Sun-Sig Byun
    Lihe Wang
    Mathematische Annalen, 2008, 341 : 629 - 650
  • [50] The pressure-gradient system on non-smooth domains
    Song, K
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (1-2) : 199 - 221