Chemical freeze-out conditions and fluctuations of conserved charges in heavy-ion collisions within a quantum van der Waals model

被引:20
|
作者
Poberezhnyuk, R., V [1 ,2 ]
Vovchenko, V. [2 ,3 ]
Motornenko, A. [2 ,3 ]
Gorenstein, M., I [1 ,2 ]
Stoecker, H. [2 ,3 ,4 ]
机构
[1] Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[2] Frankfurt Inst Adv Studies, Giersch Sci Ctr, D-60438 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[4] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany
关键词
STATISTICAL MULTIFRAGMENTATION; NUCLEAR-EQUATION; MULTIPLICITY; TEMPERATURE; ENTROPY; PROTON; MATTER;
D O I
10.1103/PhysRevC.100.054904
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The chemical freeze-out parameters in central nucleus-nucleus collisions are extracted consistently from hadron-yield data within the quantum van der Waals (QvdW) hadron resonance gas model. The beam energy dependencies for skewness and kurtosis of net baryon, net electric, and net strangeness charges are predicted. The QvdW interactions in asymmetric matter, Q/B not equal 0.5, between (anti)baryons yield a noncongruent liquid-gas phase transition, together with a nuclear critical point (CP) with critical temperature of T-c = 19.5 MeV. The nuclear CP shows that the collision energy dependence of the skewness and the kurtosis both deviate significantly from the ideal hadron resonance gas baseline predictions even far away, in the (T, mu(B)) plane, from the CP. These predictions can readily be tested by the STAR and NA61/SHINE Collaborations at the RHIC BNL and the SPS CERN, respectively, and by HADES at GSI. The results presented here offer a broad opportunity for the search for signals of phase transition in dense hadronic matter at the future NICA and FAIR high-intensity facilities.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Freeze-out in ultra-relativistic heavy-ion collisions
    Tomásik, B
    STRONG AND ELECTROWEAK MATTER 2002, PROCEEDINGS, 2003, : 379 - 383
  • [22] Phase evolution and freeze-out within alternative scenarios of relativistic heavy-ion collisions
    Ivanov, Yu B.
    PHYSICS LETTERS B, 2013, 726 (1-3) : 422 - 426
  • [24] Extracting the magnitude of magnetic field at freeze-out in heavy-ion collisions
    Xu, Kun
    Shi, Shuzhe
    Zhang, Hui
    Hou, Defu
    Liao, Jinfeng
    Huang, Mei
    PHYSICS LETTERS B, 2020, 809
  • [25] Understanding of the freeze-out in ultra-relativistic heavy-ion collisions
    Tomásik, B
    NUKLEONIKA, 2004, 49 : S11 - S13
  • [26] Saturation of ET/Nch and freeze-out criteria in heavy-ion collisions
    Cleymans, J.
    Sahoo, R.
    Mahapatra, D. P.
    Srivastava, D. K.
    Wheaton, S.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2008, 35 (10)
  • [27] Freeze-Out Conditions in Heavy Ion Collisions from QCD Thermodynamics
    Bazavov, A.
    Ding, H. -T.
    Hegde, P.
    Kaczmarek, O.
    Karsch, F.
    Laermann, E.
    Mukherjee, Swagato
    Petreczky, P.
    Schmidt, C.
    Smith, D.
    Soeldner, W.
    Wagner, M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [28] Chemical freeze-out in heavy ion collisions at large baryon densities
    Floerchinger, Stefan
    Wetterich, Christof
    NUCLEAR PHYSICS A, 2012, 890 : 11 - 24
  • [29] Two freeze-out models for hadrons produced in relativistic heavy-ion collisions
    Choi, Suk
    Lee, Kang Seog
    PHYSICAL REVIEW C, 2011, 84 (06):
  • [30] Snapshots of fireballs at freeze-out from heavy-ion collisions at different energies
    Melo, Ivan
    Tomasik, Boris
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,