The Chen-Chvatal conjecture for metric spaces induced by distance-hereditary graphs

被引:14
|
作者
Aboulker, Pierre [1 ]
Kapadia, Rohan [1 ]
机构
[1] Concordia Univ, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ERDOS THEOREM; HYPERGRAPHS; BRUIJN; LINES;
D O I
10.1016/j.ejc.2014.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical theorem of Euclidean geometry asserts that any noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvatal conjectured a generalization of this result to arbitrary finite metric spaces, with a particular definition of lines in a metric space. We prove it for metric spaces induced by connected distance-hereditary graphs-a graph G is called distance-hereditary if the distance between two vertices u and v in any connected induced subgraphH of G is equal to the distance between u and v in G. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Solution of the Chen-Chvatal conjecture for specific classes of metric spaces
    Rodriguez-Velazquez, Juan Alberto
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7766 - 7781
  • [2] Bisplit graphs satisfy the Chen-Chvatal conjecture
    Beaudou, Laurent
    Kahn, Giacomo
    Rosenfeld, Matthieu
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01):
  • [3] A New Class of Graphs That Satisfies the Chen-Chvatal Conjecture
    Aboulker, P.
    Matamala, M.
    Rochet, P.
    Zamora, J.
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (01) : 77 - 88
  • [4] DISTANCE-HEREDITARY GRAPHS
    BANDELT, HJ
    MULDER, HM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) : 182 - 208
  • [5] Domination in distance-hereditary graphs
    Chang, MS
    Wu, SC
    Chang, GJ
    Yeh, HG
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 116 (1-2) : 103 - 113
  • [6] STEINER DISTANCE-HEREDITARY GRAPHS
    DAY, DP
    OELLERMANN, OR
    SWART, HC
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) : 437 - 442
  • [7] CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS
    HOWORKA, E
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (112): : 417 - 420
  • [8] Almost distance-hereditary graphs
    Aïder, M
    [J]. DISCRETE MATHEMATICS, 2002, 242 (1-3) : 1 - 16
  • [9] POWERS OF DISTANCE-HEREDITARY GRAPHS
    BANDELT, HJ
    HENKMANN, A
    NICOLAI, F
    [J]. DISCRETE MATHEMATICS, 1995, 145 (1-3) : 37 - 60
  • [10] Distance-hereditary comparability graphs
    Di Stefano, Gabriele
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2669 - 2680