Bisplit graphs satisfy the Chen-Chvatal conjecture

被引:0
|
作者
Beaudou, Laurent [1 ]
Kahn, Giacomo [2 ]
Rosenfeld, Matthieu [3 ]
机构
[1] Higher Sch Econ, Moscow, Russia
[2] Univ Orleans, Orleans, France
[3] Univ Liege, Liege, Belgium
关键词
bisplit graphs; Chen-Chvatal conjecture; distances;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we give a lengthy proof of a small result! A graph is bisplit if its vertex set can be partitioned into three stable sets with two of them inducing a complete bipartite graph. We prove that these graphs satisfy the Chen-Chvatal conjecture: their metric space (in the usual sense) has a universal line (in an unusual sense) or at least as many lines as the number of vertices.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A New Class of Graphs That Satisfies the Chen-Chvatal Conjecture
    Aboulker, P.
    Matamala, M.
    Rochet, P.
    Zamora, J.
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (01) : 77 - 88
  • [2] The Chen-Chvatal conjecture for metric spaces induced by distance-hereditary graphs
    Aboulker, Pierre
    Kapadia, Rohan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 43 : 1 - 7
  • [3] Solution of the Chen-Chvatal conjecture for specific classes of metric spaces
    Rodriguez-Velazquez, Juan Alberto
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7766 - 7781
  • [4] Chen and Chvatal's conjecture in tournaments
    Araujo-Pardo, Gabriela
    Matamala, Martin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 97
  • [5] UNICYCLIC GRAPHS SATISFY HARARYS CONJECTURE
    ARJOMANDI, E
    CORNEIL, DG
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (04): : 593 - 595
  • [6] Bisplit graphs
    Brandstädt, A
    Hammer, PL
    Le, VB
    Lozin, VV
    [J]. DISCRETE MATHEMATICS, 2005, 299 (1-3) : 11 - 32
  • [7] Proof of Chvatal's conjecture on maximal stable sets and maximal cliques in graphs
    Deng, XT
    Li, GJ
    Zang, WN
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 301 - 325
  • [8] A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture
    Leidner, Maxfield
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (02) : 377 - 388
  • [9] A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture
    Maxfield Leidner
    [J]. Graphs and Combinatorics, 2014, 30 : 377 - 388
  • [10] A note on the recognition of bisplit graphs
    Abueida, Atif
    Sritharan, R.
    [J]. DISCRETE MATHEMATICS, 2006, 306 (17) : 2108 - 2110