Load Forecasting for Different Prediction Horizons using ANN and ARIMA models

被引:3
|
作者
Zuleta-Elles, Isabella [1 ]
Bautista-Lopez, Aiskel [1 ]
Catano-Valderrama, Milton J. [1 ]
Marin, Luis G. [1 ]
Jimenez-Estevez, Guillermo [1 ]
Mendoza-Araya, Patricio [2 ]
机构
[1] Univ Los Andes, Dept Elect & Elect Engn, Bogota, Colombia
[2] Univ Chile, Dept Elect Engn, Santiago, Chile
关键词
Short Term Load Forecasting; Microgrids; Energy Management System; Artificial Neural Networks; ARIMA;
D O I
10.1109/CHILECON54041.2021.9702913
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate forecasting of renewable energy resources and load has a crucial role in the overall operation efficiency and energy system integration of microgrids. In addition to this, in comparison with conventional power systems, the behaviour of microgrids loads presents higher frequency changes, which means greater volatility and higher uncertainty. In order to improve the robustness of microgrid energy management, and define through two different prediction techniques the best model for load forecasting, this paper provides a substantial review of theoretical Short Term forecasting methodologies, specifically Artificial Neural Network and ARIMA model, for microgrids loads. Using data from a real microgrid, the ANN model demonstrated a better performance than the ARIMA model in the forecasting results evaluated through specific metrics such as RMSE or MAE.
引用
收藏
页码:616 / 622
页数:7
相关论文
共 50 条
  • [21] A Model Integrating ARIMA and ANN with Seasonal and Periodic Characteristics for Forecasting Electricity Load Dynamics in a State
    Yu, K. W.
    Hsu, C. H.
    Yang, S. M.
    [J]. 2019 IEEE 6TH INTERNATIONAL CONFERENCE ON ENERGY SMART SYSTEMS (2019 IEEE ESS), 2019, : 18 - 23
  • [22] Different Forecasting Horizons Based Performance Analysis of Electricity Load Forecasting Using Multilayer Perceptron Neural Network
    Madhiarasan, Manogaran
    Louzazni, Mohamed
    [J]. FORECASTING, 2021, 3 (04): : 804 - 838
  • [23] Parametric Evaluation of Different ANN Architectures: Forecasting Wind Power Across Different Time Horizons
    Sewdien, V. N.
    Preece, R.
    Torres, J. L. Rueda
    Meijden, M. A. M. M.
    [J]. PROCEEDINGS OF THE 2018 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D-LA), 2018,
  • [24] ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations
    Chodakowska, Ewa
    Nazarko, Joanicjusz
    Nazarko, Lukasz
    Rabayah, Hesham S. S.
    Abendeh, Raed M. M.
    Alawneh, Rami
    [J]. ENERGIES, 2023, 16 (13)
  • [25] Short Term Load Forecasting Using ANN Technique
    Elgarhy, Shady Mahmoud
    Othman, Mahmoud M.
    Taha, Adel
    Hasanien, Hany M.
    [J]. 2017 NINETEENTH INTERNATIONAL MIDDLE-EAST POWER SYSTEMS CONFERENCE (MEPCON), 2017, : 1385 - 1394
  • [26] Forecasting Financial Time Sesries Using Combined ARIMA-ANN Algorithm
    Hryhorkiv, Vasyl
    Buiak, Lesia
    Verstiak, Andrii
    Hryhorkiv, Mania
    Verstiak, Oksana
    Tokarieva, Kateryna
    [J]. 2020 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER INFORMATION TECHNOLOGIES (ACIT), 2020, : 455 - 458
  • [27] Wind energy forecasting using multiple ARIMA models
    Li, Xiaoou
    Francisco Sabas, Juan
    Duarte Mendez, Vicente
    [J]. 2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 2034 - 2039
  • [28] Forecasting Sugarcane Yield of Tamilnadu Using ARIMA Models
    K. K. Suresh
    S. R. Krishna Priya
    [J]. Sugar Tech, 2011, 13 : 23 - 26
  • [29] Forecasting Sugarcane Yield of Tamilnadu Using ARIMA Models
    Suresh, K. K.
    Priya, S. R. Krishna
    [J]. SUGAR TECH, 2011, 13 (01) : 23 - 26
  • [30] Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels
    Burg, Leonard
    Guerses-Tran, Gonca
    Madlener, Reinhard
    Monti, Antonello
    [J]. ENERGIES, 2021, 14 (21)